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Abstract 

Tumor suppressor cylindromatosis protein (CYLD) regulates NF-κB and JNK signaling pathways by cleaving K63-
linked poly-ubiquitin chain from its substrate molecules and thus preventing the progression of tumorigenesis 
and metastasis of the cancer cells. Mutations in CYLD can cause aberrant structure and abnormal functionality leading 
to tumor formation. In this study, we utilized several computational tools such as PANTHER, PROVEAN, PredictSNP, 
PolyPhen-2, PhD-SNP, PON-P2, and SIFT to find out deleterious nsSNPs. We also highlighted the damaging impact 
of those deleterious nsSNPs on the structure and function of the CYLD utilizing ConSurf, I-Mutant, SDM, Phyre2, HOPE, 
Swiss-PdbViewer, and Mutation 3D. We shortlisted 18 high-risk nsSNPs from a total of 446 nsSNPs recorded in the NCBI 
database. Based on the conservation profile, stability status, and structural impact analysis, we finalized 13 nsSNPs. 
Molecular docking analysis and molecular dynamic simulation concluded the study with the findings of two sig-
nificant nsSNPs (R830K, H827R) which have a remarkable impact on binding affinity, RMSD, RMSF, radius of gyration, 
and hydrogen bond formation during CYLD-ubiquitin interaction. The principal component analysis compared native 
and two mutants R830K and H827R of CYLD that signify structural and energy profile fluctuations during molecular 
dynamic (MD) simulation. Finally, the protein–protein interaction network showed CYLD interacts with 20 proteins 
involved in several biological pathways that mutations can impair. Considering all these in silico analyses, our study 
recommended conducting large-scale association studies of nsSNPs of CYLD with cancer as well as designing precise 
medications against diseases associated with these polymorphisms.
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1 Introduction
CYLD, or cylindromatosis lysine 63 deubiquitinase, is a 
tumor suppressor protein that generally performs deu-
biquitinase activities essential for a variety of cellular and 
signaling processes [1]. CYLD is mainly a cytoplasmic 
protein that belongs to the ubiquitin-specific protease 
(USP) family [2] and is abundant in the brain [3], skeletal 
muscle [4], and immune cells [5]. CYLD processes larger 
substrate molecule by cleaving lysin63-linked ubiquitin 
chains from that molecule [6, 7] and thereby involved in 
corresponding cellular events, namely: cell cycle control 
[8], cellular differentiation [9], oncogenesis [10], cellular 
proliferation [11, 12], and apoptosis [13]. Mutation in 
CYLD can give rise to the constant activation and dereg-
ulation of cell survival proteins associated with tumo-
rigenesis [10]. Several studies have demonstrated that 
mutated CYLD gene greatly contributes to the familial 
cylindromatosis, Brooke-Spiegler syndrome, and multi-
ple familial trichoepitheliomas [14, 15].
CYLD gene encodes a 956 amino acids long protein 

with a weight of about 110 kD and is located on the chro-
mosome 16q12-q13 [1] with 19 introns and 21 exons 
[16]. It contains a C-terminal conserved catalytic domain 
(USP) along with three N-terminal Cap-Gly domains 
[1]. Cap-Gly domain is crucial for the interaction with 
proteins involved in the NF-κB pathway [17], while USP 
domain is important for hydrolyzing the ubiquitin chain. 
This carboxyl terminal (USP) catalytic domain changes 
its target proteins by deubiquitinating Lys63-linked ubiq-
uitin chains of specific substrates that are vital in various 
cellular signaling events, especially in NF-κB pathway [2, 
18]. By deubiquitinating TRAF2/TRAF6, NF-κB essential 
modifier (NEMO), CYLD, acts as a key regulator in the 
typical p65/NF-κB pathway [19, 20]. CYLD also contrib-
utes greatly by preventing the Bcl3 from being localized 
in the nucleus and thus controls tumor development and 
proliferation [11]. Therefore, any mutation disrupting the 
deubiquitinating (DUB) activity of CYLD may lead to 
oncogenic function gain, as DUB activity is fundamental 
for CYLD as a tumor suppressor [21, 22].

Several polymorphisms have been identified as being 
responsible for the impaired activity of the CYLD gene, 
which finally leads to the tumorigenesis [23, 24]. The con-
sequence of missense mutation on CYLD and the man-
ner by which it is associated with cancer formation are 
not fully explored yet using computational approaches. 
Therefore, in silico analysis on nsSNPs of CYLD will help 
to demonstrate the potential role of mutation contribut-
ing towards the molecular mechanisms of various cancer 
types.

By considering all these facts, we have conducted an 
extensive analysis and explored numerous bioinformatics 
tools to investigate the functional and structural effect of 

various nsSNPs on the CYLD protein and narrow down 
the list of the high-risk nsSNPs for our present study. 
In addition, we performed structural stability analy-
sis, conservation analysis, and protein–protein interac-
tions  analysis followed by molecular docking analysis 
with its interacting molecules. Cancer-associated nsSNP 
identification is further validated by molecular dynamic 
simulation analysis where root-mean-square deviations 
(RMSD), root-mean-square fluctuation (RMSF), radius 
of gyration (Rg) analysis, and H-bond analysis were taken 
into consideration. This study will help us to identify can-
cer-prone genotypes related to this CYLD protein as well 
as future research on CYLD mutations.

2  Methodology
2.1  Assortment of nsSNPs
The information about human CYLD protein along with 
its amino acid sequence was assembled from the National 
Center for Biotechnology Information (NCBI). Details of 
SNPs (reference ID, location, residual variations, global 
minor allele frequency) were retrieved from dbSNP [25] 
(https:// www. ncbi. nlm. nih. gov/ proje cts/ SNP/), a pub-
licly accessible database for genetic variations available in 
NCBI for further computational analyses.

2.2  Screening of most deleterious nsSNPs
We exploited seven different in silico nsSNP prediction 
tools (SIFT, PANTHER, PolyPhen-2, PROVEAN, PhD-
SNP, PON-P2, and PredictSNP) for the assessment of 
most deleterious nsSNPs having significant effect on the 
structure and function of the CYLD protein [2].

SIFT [26] (Sorting Intolerant From Tolerant) (https:// 
sift. jcvi. org/ www/ SIFT_ seq_ submi t2. html), a sequence 
homology-based algorithm, determines the effect of 
amino acid substitution over the physical and functional 
properties of a protein. SIFT provides prediction score 
against our submitted rsID for query nsSNPs where pre-
diction score < 0.05 is regarded as intolerant and > 0.05 
regarded as tolerant. SIFT result was obtained from Pre-
dictSNP [27].

PANTHER [28] (https:// www. panth erdb. org/ tools) 
database integrates the evolutionary conservation his-
tory with hidden Markov models (HMMs) to analyze 
the probability of a damaging effect of nsSNPs on the 
functionality of a protein and their interacting abil-
ity with other proteins. PANTHER provides position-
specific evolutionary conservation scores when protein 
sequences along with human missense SNPs are submit-
ted as a query.

PolyPhen-2 [29] (Polymorphism Phenotyping v2) 
(https:// genet ics. bwh. harva rd. edu/ pph2/) is a tool that 
employs machine learning methods, considering multi-
ple sequence alignment to classify the damaging impact 

https://www.ncbi.nlm.nih.gov/projects/SNP/
https://sift.jcvi.org/www/SIFT_seq_submit2.html
https://sift.jcvi.org/www/SIFT_seq_submit2.html
https://www.pantherdb.org/tools
https://genetics.bwh.harvard.edu/pph2/
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of allele change over the structure and function of a pro-
tein categorized as probably damaging with probabilistic 
score (0.85 to 1.0) and possibly damaging with probabil-
istic score (0.15 to 1.0). Information about amino acid 
substitution along with FASTA sequence of a protein is 
required for the query submission.

PROVEAN [30, 31] (Protein Variation Effect Analyzer) 
(https:// prove an. jcvi. org/ index. php) predicts the del-
eterious consequences of single or multiple amino acid 
changes (insertion and deletion) on the biological func-
tion of a protein. PROVEAN considers − 2.5 as a cut-
off value where amino acid substitution score >  − 2.5 is 
regarded as deleterious mutation.

PhD-SNP [32] (Predictor of human Deleterious Single-
Nucleotide Polymorphisms) (https:// snps. biofo ld. org/ 
phd- snp/ phd- snp. html) applies support vector machines 
(SVMs) to distinguish a genetic disease-linked point 
mutation from the neutral polymorphisms. Protein 
sequences, mutation profile information such as posi-
tion of mutation, and mutated residues are required as an 
input file.

PON-P2 [33] (http:// struc ture. bmc. lu. se/ PON- P2/), a 
machine learning-based algorithm, classifies the amino 
acid alteration into three categories: pathogenic, neutral, 
and unknown groups. This tool predicts probability score 
of variant tolerance with respect to sequence conserv-
ancy, biological and physical properties of amino acids, 
gene ontology features, and functional annotations of 
alteration sites.

PredictSNP [27] (https:// losch midt. chemi. muni. cz/ 
predi ctsnp) is a consensus program based on protein 
mutant database and the UniProt database annotations. 
It confirms the accuracy of the results acquired from 
eight renowned prediction tools (MAPP, nsSNPAnalyzer, 
PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, 
and SNAP) which signifies the impact of amino acid 
alteration on functional activity of a protein.

2.2.1  Identification of deleterious nsSNPs on different CYLD 
domains

InterPro [34] (https:// www. ebi. ac. uk/ inter pro/) program 
ascertained the position of mutant nsSNPs on the CYLD 
protein according to the protein families, domains, and 
functional regions by integrating information from vari-
ous protein-signature databases such as Pfam, PROS-
ITE, PRINTS, ProDom, SMART, PIRSF, TIGRFAMs, 
PANTHER, the structure-based SUPERFAMILY, and 
Gene3D. Protein ID or FASTA sequences are used for the 
query searching.

2.2.2  Structural stability determination
I-Mutant and SDM tools specify the structural stabil-
ity alteration of a protein as a result of deleterious point 

mutation. I-Mutant [35] (https:// foldi ng. biofo ld. org/i- 
mutant/ i- mutan t2.0. html) is a web server established on 
a support vector machine utilizing the thermodynamic 
database ProTherm to offer the changing free energy 
(DDG value) and the reliability index value (RI) of a pro-
tein and thus evaluate the level of changing structural 
stability in mutant proteins.

Site Director Mutator [36, 37] (SDM) is a web-based 
application that predicts the significant effect of mutation 
on protein stability. This tool computes stability score 
considering amino acid substitution patterns among 
homologous proteins from the same family and esti-
mates free energy variation by comparing wild-type and 
mutant-type proteins.

2.2.3  Evolutionary conservation analysis
ConSurf [38] (https:// consu rf. tau. ac. il) applies either an 
empirical Bayesian method or a maximum likelihood 
(ML) method for the interpretation of the evolutionary 
conservancy of a particular amino acid at a specific posi-
tion of a protein that signifies its structural and functional 
importance. To assess conservation score (ranges from 1 
to 9) of an amino acid in a protein, ConSurf analyzes the 
phylogenetic relationship, multiple sequence alignment, 
and sequence homology of the protein. Conserved nsS-
NPs were considered for the further investigations.

2.2.4  Structural effect of nsSNPs on CYLD
Project HOPE [39] (https:// www3. cmbi. umcn. nl/ hope) is 
a web browser that uses Distributed Annotation System 
along with UniProt database to analyze the impact of a 
point mutation on the structure of a protein. Significant 
findings regarding structural variations between mutant 
and native residues are produced through 3D homology 
modelling using YASARA program. FASTA sequence or 
UniProt ID is submitted as query file.

Swiss-PdbViewer [40, 41] (v4.1.0) (https:// spdbv. vital- 
it. ch/) computes the energy minimization of a protein 
for different amino acid substitutions. This tool utilizes 
its mutation tool and thereby selects best rotamer of 
the mutated protein and calculates the energy minimi-
zation state of a native and mutant 3D protein model 
using NOMAD-Ref server. This server performed the 
energy minimization of a 3D structure of a protein using 
GROMACS program as a default force field which is built 
on the methods of steepest descent, conjugate gradient, 
and L-BFGS (limited-memory Broyden–Fletcher–Gold-
farb–Shanno) algorithm.

2.2.5  3D structure modelling to visualize the effect of nsSNPs
Three-homology modeling tools, namely: SWISS-
MODEL, Phyre2, and I-TASSER, were used to create 3D 
structure of native and mutant proteins.

https://provean.jcvi.org/index.php
https://snps.biofold.org/phd-snp/phd-snp.html
https://snps.biofold.org/phd-snp/phd-snp.html
http://structure.bmc.lu.se/PON-P2/
https://loschmidt.chemi.muni.cz/predictsnp
https://loschmidt.chemi.muni.cz/predictsnp
https://www.ebi.ac.uk/interpro/
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://consurf.tau.ac.il
https://www3.cmbi.umcn.nl/hope
https://spdbv.vital-it.ch/
https://spdbv.vital-it.ch/
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I-TASSER [42–44] (https:// zhang lab. ccmb. med. umich. 
edu/I- TASSER/) is a web server that operates replica-
exchanged Monte Carlo simulations and thereby builds 
3D structure of a full-length protein through splicing 
continuous threading alignments. This tool offers the 
comparative analysis of the I-TASSER models using con-
fidence score, TM-score (template modelling score), and 
RMSD (root-mean-square deviation) value which is con-
ducted by benchmark scoring system.

Phyre2 [45] (https:// www. sbg. bio. ic. ac. uk/ phyre2) is a 
web server based on advanced distant homology detec-
tion algorithms that generates 3D protein model and 
therefore provides analysis on the influence of amino acid 
variants on structure and function of a protein. Intensive 
mode was selected for developing 3D structure of CYLD 
protein. This mode constructs a full-length sequence 
model of a query protein combining different template 
models with high confidence score and sequence simi-
larity. Then, TM-align tool [46] (https:// zhang lab. ccmb. 
med. umich. edu/ TM- align/) is incorporated to compare 
the mutant protein structure against the native one. TM-
align calculates template modelling score (TM-score) and 
root-mean-square deviation (RMSD) based on structural 
similarities between two proteins. It generates TM-score 
ranges between 0 and 1, where TM-score 1 signifies per-
fect similarity between two protein structures. Significant 
deviation between native and mutant structure is esti-
mated considering higher RMSD value.

SWISS-MODEL [47] (https:// swiss model. expasy. org/) 
server combines sequence alignment and template struc-
ture to develop three-dimensional structure of a protein. 
QMEAN scoring function applies for the model qual-
ity assessment to validate the reliability of the resultant 
models of both wild-type and mutant-type proteins.

2.3  Molecular docking analysis
HADDOCK [48, 49] (High Ambiguity Driven Protein–
Protein Docking) (https:// wenmr. scien ce. uu. nl/), a web 
tool, was used to perform molecular docking analysis to 
understand the effect of deleterious point mutation over 
the binding affinity of CYLD with its interacting pro-
teins. Protein–protein docking was carried out by the 
HADDOCK, with default settings for all parameters. 
The PDB structure of wild-type CYLD protein (PDB 
id-2VHF) was taken from SWISS-MODEL [50], and 
Ramachandran plot was used to validate the structure. 
Refinement was done before performing docking analysis 
using refinement interface in HADDOCK. CPORT [51] 
server (http:// haddo ck. chem. uu. nl/ servi ces/ CPORT) 
identified the active and passive residues of CYLD and 
ubiquitin protein. PRODIGY [52] (https:// wenmr. scien 
ce. uu. nl/ prodi gy/) web server performs the calculation 
of the binding affinity between protein–protein dock 

complexes. BIOVIA Discovery Studio [53] was used to 
perform docking complex analysis along with image 
generation.

2.4  Identification of the cancer‑associated nsSNPs
The web tool mutation 3D [54] (http:// www. mutat ion3d. 
org/) enables users to easily identify the cancer causing 
mutation clusters collected from 975,000 somatic muta-
tions recorded in 6811 cancer sequencing studies. This 
tool applies 3D clustering approach to find out amino 
acid substitution of a protein that can cause cancer when 
a target protein along with its mutations inserted as a 
query. We used this tool to look at the nsSNPs that can 
predispose to cancer.

2.5  Molecular dynamics simulation
YASARA [55] simulation software uses AMBER14 [56] 
as a force field to analyze the changing outcome of wild-
type and mutant dock complex by allowing them to 
interact for a fixed period. The simulating chamber was 
permitted to contain 20 Å around the protein that is filled 
with water at 0.997 g/ml density. Initially, protein–pro-
tein dock complex was cleaned along with the H-bond 
network optimization. The steepest descent method was 
used to minimize the energy of the protein–protein com-
plex. In order to evaluate the short-range Coulomb and 
van der Waals interaction, the cut-off radius was limited 
to 8 Å. The PME (particle mesh Ewald) method was uti-
lized to assess the long-range electrostatic interactions. 
Simulations were accomplished under constant pressure 
in water, and Berendsen thermostat process controlled 
the simulation temperature at 298 K. Counterions (Na or 
Cl) were introduced to maintain a concentration of 0.9% 
(NaCl) to neutralize the system at pH 7.4. Simulation 
was executed for 100 ns under constant temperature and 
pressure by maintaining a time-step interval of 2.5 fem-
toseconds (fs). This tool provides following types of data 
such as root-mean-square deviation (RMSD), root-mean-
square fluctuation (RMSF), radius of gyration, total num-
ber of hydrogen bonds, and helix, sheet, turn, and coil 
values after the completion of simulations.

2.6  Principal component analysis
Principal component analysis was performed to deter-
mine the dynamics of biological system by reducing data 
complexity and retrieving the coordinated movements 
found in the simulations. A correlation matrix was built 
to represent variations detected in MD trajectories and 
offers the prediction of the first two principal compo-
nents based on the calculation of the eigenvectors and 
eigenvalues [57, 58]. We performed principal compo-
nent analysis (PCA) by considering bond distances, bond 
angles, dihedral angles, planarity, van der Waals energies, 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://www.sbg.bio.ic.ac.uk/phyre2
https://zhanglab.ccmb.med.umich.edu/TM-align/
https://zhanglab.ccmb.med.umich.edu/TM-align/
https://swissmodel.expasy.org/
https://wenmr.science.uu.nl/
http://haddock.chem.uu.nl/services/CPORT
https://wenmr.science.uu.nl/prodigy/
https://wenmr.science.uu.nl/prodigy/
http://www.mutation3d.org/
http://www.mutation3d.org/
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and electrostatic energies and thus analyze the structural 
and energy changes of the wild CYLD-ubiquitin complex 
and mutant CYLD-ubiquitin complexes (H827R, R830K). 
Minitab software (Minitab 19, Minitab Inc., State Col-
lege, PA, USA), a multivariate data analysis tool, per-
formed principal component analysis (PCA) to signify 
variations among different groups by analyzing 100-ns 
MD simulation data.

2.7  Protein–protein interacting network analysis
STRING [59] (https:// string- db. org/), online database, 
helped with better understanding of the molecular inter-
actions of CYLD with other proteins. STRING produced 
the data in simple interaction format (SIF) or GML for-
mat visualized by Cytoscape [60, 61], a freely accessible 
java-based software. The overall workflow is represented 
by Fig. 1.

3  Result
3.1  Retrieval of nsSNPs
We retrieved all the reported SNPs found in CYLD from 
NCBI dbSNP database. This database contains a total of 
13,653 SNPs, where 13,111 SNPs were in the intronic 

region, 2066 SNPs were in the noncoding region, and 658 
SNPs were in the coding region. In case of coding region, 
413 SNPs were missense, and 245 SNPs were synony-
mous. A total of 446 missense variants have been found 
as some reference SNP ID (rsID) contain multiple SNPs 
at a single position. We considered all missense variants 
for our further analysis.

3.2  Identificsation of damaging nsSNPs
All missense variants obtained from dbSNP database 
were subjected to seven different deleterious SNP predic-
tion tools, namely: PANTHER, PROVEAN, PredictSNP, 
PolyPhen-2, PhD-SNP, PON-P2, and SIFT, to determine 
their damaging consequences on the structure and func-
tion of CYLD protein. Each server predicted different 
amount of pathogenic nsSNPs. Finally, we targeted 18 
common nsSNPs which were predicted to be deleterious 
by all the 7 in silico tools out of 446 nsSNPs (Table 1).

3.3  Domain identification of CYLD
InterPro was used to conduct functional analysis of 
the CYLD protein by categorizing them into protein 
families and identifying the active sites and domain 

Fig. 1 A workflow representing all the in silico tools utilized for the computational analysis

https://string-db.org/
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of the corresponding protein. This domain identifica-
tion analysis revealed that CYLD contains two func-
tional domains which are Cap-Gly domain (127–540 
amino acid) and USP domain (592–950 AA) (S1 Fig.). 
Among 18 nsSNPs,16 nsSNPs were positioned at the 
USP domain, whereas 2 nsSNPs were in the Cap-Gly 
domain.

3.4  Evolutionary conservation analysis of deleterious 
nsSNP in CYLD

Evolutionary conserved amino acid residues in a pro-
tein play specific roles in various functional biological 
cascades. Point mutation in such conserved residues 
results in a protein’s aberrant structural and functional 
properties. ConSurf web server facilitates the analysis 
of the evolutionary conservancy and solvent accessibil-
ity of the amino acid residues of CYLD protein (Fig. 2). 
Among 18 high-risk nsSNPs, it predicted 16 highly 
conserved amino acid residues with conservation score 
9 (S1 Table), whereas 2 nsSNPs (L610F, L781P) were 
conserved and average conserved respectively. These 
conserved residues are classified as structural or func-
tional depending on their location in the structure of 
a protein. Amino acid residues exposed in the surface 
of a protein are considered functional, whereas buried 
residues are predicted to be structural [62–64]. There-
fore, these findings further highlight the importance of 
the deleterious effects of nsSNPs situated at those bur-
ied and exposed residues of the CYLD protein.

3.5  Prediction of changing structural stability
Amino acid substitutions are thought to have damag-
ing impacts on protein stability. Our selected 18 nsSNPs 
were subjected to the I-Mutant and SDM tools to analyze 
the changes in stability of CYLD protein due to point 
mutations. I-Mutant calculated the free energy change 
values ΔΔG and reliability index value (RI). It predicted 
14 nsSNPs that decreased the stability, whereas 4 nsSNPs 
(R894W, P698L, P698S, L781P) increased the stability of 
CYLD (Table 2). SDM tool identified 4 nsSNPs (R894W, 
P698L, P698S, P698T) as stabilizing and 14 nsSNPs as 
destabilizing that are specifically responsible for the 
protein instability and dysfunction (Table  2). Both tools 
confirmed three common variants: R894W, P698L, and 
P698S, which increased the stability of the protein after 
mutation. Therefore, we excluded these three missense 
variants from further analysis.

3.6  Comparative structural analysis of wild‑type 
and mutant CYLD

We exploited three computational algorithms: Phyre2, 
I-TASSER, and SWISS-MODEL to perform comparative 
structural analysis of wild-type and 15 mutants of CYLD. 
These tools were used to generate 3D structures of wild-
type protein and mutated proteins as the whole structure 
of CYLD is not available in Protein Data Bank. Phyre2 
utilized 2VHF and 1IXD as template for the 3D protein 
structure modeling for USP and CAP-Gly domain of 
CYLD, respectively.

Table 1 List of highly deleterious nsSNPs screened by seven computational programs

PANTHER PROVEAN PredictSNP PolyPhen‑2 PhD‑SNP PON‑P2 SIFT

V478A Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

R489H Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

L610F Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

I644T Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

L648R Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

P698T Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

P698S Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

P698L Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

E747G Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

L781P Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

H827P Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

H827R Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

R830K Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

V864F Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

I867K Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

I867R Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

H871Q Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious

R894W Probably damaging Deleterious Deleterious Probably damaging Disease Pathogenic Deleterious
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Fig. 2 Conservation analysis of amino acid residues of CYLD using ConSurf server
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Then, we determined variations between native and 
mutant 3D protein structure with the help of TM-
align tool. Two variants, V478A and R489H located in 
CAP-Gly domain with RMSD value 0, indicated no dis-
similarities between these two variants when compared 
with wild-type protein. On the other hand, comparison 
between native and 13 missense variants exhibits sig-
nificant TM-score and RMSD value (S2 Table). Missense 
variants located on USP domain showed greater RMSD 
values, and among them, H871Q, I867K, and H827P vari-
ants had the highest TM-score. We also used I-TASSER 
for an additional structural study of 13 nsSNPs to verify 
the relevance of these findings. This server generated the 
top 5 reliable superimposed models of mutants over the 
wild-type protein based on minimum confidence score 
(C-score) along with significant TM-score and RMSD 
value. To conduct comparative analysis of all atom of a 
protein, we incorporated SWISS-MODEL. This homol-
ogy modeling server utilized 2vhf.2 as a template to build 
the structure of CYLD and its mutant. SWISS-MODEL 
server also determined solvation, torsion, QMEAN, and 
Cβ value for both native and mutants which are shown in 
the S3 Table.

3.7  Analysis of structural effect of point mutation on CYLD 
protein

The project HOPE server analyzed the physiochemi-
cal alterations of CYLD protein structure as a result 

of amino acid substitutions (S4 Table). We observed 
functional CYLD mutations that significantly change 
size and hydrophobicity in all mutant residues. L610F, 
L648R, H827R, V864F, I867K, and I867R mutant resi-
dues are larger, whereas I644T, P698T, E747G, L781P, 
H827P, R830K, and H871Q mutant residues are smaller 
when compared to wild-type residues. Repulsion was 
generated between the mutant residue and neigh-
boring residues when a charge was added in H827R 
(Fig.  3), I867K, and I867R position due to mutation. 
On the other hand, protein-folding problems can arise 
in L648R missense variant and empty space formed in 
the core of the protein when mutation occurs in I644T 
and R830K (Fig. 3) position. Moreover, H871Q, I644T, 
L781P, E747G, H827P, and R830K nsSNPs also resulted 
in the loss of interactions.

Swiss-PDBViewer calculates energy state variations 
of a protein when the position of an atom or molecules 
changes. We determined the deviations in the energy 
minimization state of CYLD structure geometry in 
wild-type and 13 variants. The total energy of the wild-
type protein was − 20,130.191 kJ/mol, which decreased 
in case of L610F, L648R, P698T, and I867R variants 
after energy minimization. Other missense variants 
showed increase in total energy after energy minimiza-
tion. Among them, H827R showed significant increase 
in total energy (− 15,956.584 kJ/mol) after energy mini-
mization (S5 Table). Structural changes in h-bond in 
R830K are shown in Fig. 4.

Table 2 Alterations in the structural stability profile of the CYLD protein by I-Mutant and SDM tool

ID Substitution I‑Mutant RI DDG‑free energy change 
value (kcal/mol)

SDM predicted stability 
change ΔΔG (kcal/mol)

Prediction

rs971330819 V478A Decrease 7  − 0.63  − 0.06 Destabilizing

rs1363261645 R489H Decrease 9  − 1.79  − 0.82 Destabilizing

rs758765051 L610F Decrease 7  − 1.25  − 0.41 Destabilizing

rs747739683 I644T Decrease 4  − 0.56  − 0.9 Destabilizing

rs1404766168 L648R Decrease 9  − 1.46  − 0.7 Destabilizing

rs964054055 P698T Decrease 5  − 0.08 1.48 Stabilizing

rs964054055 P698S Increase 2  − 0.07 0.67 Stabilizing

rs1449388332 P698L Increase 3 0.58 2.07 Stabilizing

rs121908389 E747G Decrease 7  − 0.78  − 0.94 Destabilizing

rs886040889 L781P Increase 1  − 0.15  − 2.29 Destabilizing

rs773384548 H827P Decrease 2  − 0.2  − 1.87 Destabilizing

rs773384548 H827R Decrease 0  − 0.03  − 0.52 Destabilizing

rs940896803 R830K Decrease 1  − 0.4  − 0.34 Destabilizing

rs772100161 V864F Decrease 3 0.14  − 0.5 Destabilizing

rs763179319 I867K Decrease 8  − 0.4  − 2.69 Destabilizing

rs763179319 I867R Decrease 4 0.15 2.91 Destabilizing

rs754721077 H871Q Decrease 9  − 1.56  − 1.36 Destabilizing

rs1597094057 R894W Increase 1  − 0.95 0.31 Stabilizing
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3.8  Molecular docking analysis
Molecular docking analysis was performed between the 
CYLD (wild and mutants) and ubiquitin chain using 
HADDOCK to see how mutant interacts with ubiquitin 
compared to native CYLD protein. The PDB structure for 
USP domain of CYLD was taken from SWISS-MODEL 
using PDB ID: 2VHF (583aa-956aa) as a template as 
some residues were missing in the PDB structure. 
Ramachandran plot (S1 Fig.) verified the model where 
92.47% amino acid residues are in favored region which 
assured the good quality of the model. On the other 

hand, ubiquitin chain was derived from Protein Data 
Bank (PDB ID: 3WXE). Native and mutant structures 
were refined using refinement algorithm of HADDOCK. 
Active and passive residues of Ub and CYLD protein 
were determined by CPORT server that ensures binding 
of Ub protein in the appropriate binding site of CYLD. 
The binding affinity between native CYLD and ubiquitin 
was − 14.8 kJ/mol. Among 13 high-risk nsSNPs, binding 
affinity increased in L610F, I644T, E747G, V864F, I867R, 
and H871Q, whereas binding affinity decreased in P698T, 
L781P H827P, H827R, R830K, and I867K after mutation. 

Fig. 3 Structural effect of the point mutation on variant H827R (a and b) and R830K (c and d) predicted by HOPE server. (Green color indicates wild, 
and red color indicates mutant residues)

Fig. 4 Structural effect analysis of R830K by Swiss-PDBViewer (a represents R830 where R830 forms two H-bonds (2.99 Å, 3.08 Å) which are 
indicated by green discontinuous line; b represents 830 K where K830 clashes with C856 (1.43 Å, 1.90 Å, 2.03 Å) which are indicated by pink 
discontinuous line along with two H-bonds (green line))
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Among them, significant reduction was observed in four 
nsSNPs, namely: R830K, H827R, P698T, and L781P with 
binding affinity − 12.7  kJ/mol, − 12.8  kJ/mol, − 13.0  kJ/
mol, and − 13.4  kJ/mol, respectively. Binding affinity of 
these variants showed significant deviation compared to 
native protein. Binding affinity and dissociation constant 

of all docking complexes were found from HADDOCK 
for both wild-type and mutant structures determined 
by PRODIGY server (S6 Table). We also determined 
the H-bond interaction between CYLD-ubiquitin dock 
complex applying BIOVIA Discovery Studio where wild-
type CYLD formed 24-h bonds with ubiquitin. In case of 

Fig. 5 Molecular docking analysis and visualization by BIOVIA Discovery Studio. (Blue indicates USP domain of CYLD, and chocolate color 
indicates ubiquitin. a indicates CYLD-ubiquitin docking complex, b indicates H-bond interactions between wild CYLD-ubiquitin dock complex, c 
represents H-bond interactions between mutant (H827R) CYLD-ubiquitin dock complex, d represents h-bond interactions between mutant (R830K) 
CYLD-ubiquitin dock complex)

Fig. 6 Mutation 3D predicted the association of H827R and R830K (red mark) with cancer
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R830K and H827R, total 22- and 13-h bonds were found 
in CYLD-ubiquitin dock complex respectively (Fig.  5) 
Interacting residues along with bond category and bond 
distance are represented in S7 Table.

3.9  Prediction of cancer causing nsSNPs
As CYLD is a tumor suppressor protein, loss of activity 
due to mutation can result in cancer. Mutation 3D is a 
server that predicts deleterious nsSNPs which are associ-
ated with human cancer. This analysis revealed the asso-
ciation of H827R and R830K with cancer (Fig. 6), and we 
considered these two nsSNPs for further analysis.

3.10  Molecular dynamic (MD) simulation
MD simulation was conducted to examine the devia-
tion of the native and mutant CYLD-ubiquitin complex 
in relation to its initial conformation under physiologi-
cal conditions. Trajectory analysis from the simulation 
enables the stability and flexibility of the system to be 
computed. The simulations were performed for 100 ns to 
investigate the structural flexibility, stability, and hydro-
gen bonding between the protein–protein complexes.

The overall changes in the protein stability due to the 
mutation were calculated by considering the root-mean-
square deviation (RMSD) values. Mutant R830K and 
H827R complex exhibited great deviation in comparison 
to native CYLD-ubiquitin complex (Fig.  7). The average 
RMSD value for native complex was ∼3.388 Å, which 
was increased in R830K and H827R mutant complex to 
∼5.278 Å and ∼4.9575 Å, respectively (Fig. 7). The high-
est RMSD value for native complex was 4.418 Å at 39 ns; 

meanwhile, the highest deviation was noticed for H827R 
complex with a 6.327 Å RMSD value at 79.75 ns com-
pared with its initial structure. On the other hand, R830K 
complex showed deviation at 71 ns with 6.087 Å. Native 
complex showed mild deviation in RMSD value until 39 
ns, and then the native complex stayed stable within the 
range of 2–4 Å for the rest of the time, indicating sta-
bility of the protein. On the other hand, mutant H827R 
showed an increasing tendency until 16.75 ns, and there-
after from 16.75 to 28 ns, RMSD value was decreased, 
and again, it started to increase at 29 to 100 ns at the 
range of 5–6 Å which is much higher than wild CYLD. 
Fluctuations that observed in this RMSD values indi-
cate decreasing stability of the mutant H827R. In case of 
R830K complex, fluctuation rate is greater than mutant 
H827R. In R830K, the RMSD value started to increase at 
11.5 ns and became unstable throughout the overall sim-
ulation period within the range of 5–6 Å which is higher 
than wild CYLD. Considerable fluctuations observed 
after 80 ns, and it continued up to 100 ns.

Furthermore, to determine the structural flexibility of 
the protein–protein complexes, we assessed the RMSF 
value (Fig. 7). This study revealed that R830K and native 
both complexes exhibited almost similar level of flexibil-
ity during the 100-ns simulation. However, some greater 
residual fluctuations also observed in case of R830K 
when compared with wild protein. The highest residual 
fluctuation for R830K was 8.22 Å observed at position 
GLN316 (899 aa of CYLD). On the contrary, H827R 
exhibited highest residual fluctuation 9.66 Å at position 
LYS179 (762 aa of CYLD) when compared to native and 

Fig. 7 Molecular dynamic simulation analysis performed by YASARA. (a exhibits RMSD analysis of the Cα atoms of the structure of protein–protein 
complexes at 0 to 100 ns, whereas b represents RMSF analysis of the residues of the native and mutant CYLD protein with ubiquitin over the 100-ns 
simulation)
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R830K complexes. Average fluctuation rate for native, 
mutant R830K and H827R was ∼2.041 Å, ∼2.085 Å, and 
∼2.425  Å, respectively. In terms of total residual por-
tions, the RMSFs value of all mutant complexes differed 
significantly from the native complex structure.

From the radius of gyration (Rg) analysis, compact-
ness and rigidity condition of protein–protein complex 
were determined. The Rg values of native protein com-
plex ranged from 25.27 to 26.38 Å. In case of H827R and 
R830K, it ranged between 25.17 to 26.71 Å and 24.849 to 
25.99 Å, respectively. In the average value for the native 
structure of CYLD and two mutants (H827R and R830K) 
were ∼25.65 Å, ∼25.70 Å, and ∼25.37 Å, respectively 
(Fig. 8). It was observed that H827R complex had higher 
radius of gyration value than native and mutant R830K 
complexes, thus showing least compactness.

Following that, we studied the overall number of 
intramolecular hydrogen bonds present in the protein 
to assess the protein stability or the stability between 
proteins. Native complex of CYLD-ubiquitin displayed 
an average of ∼392 H-bond throughout the 100-ns 
simulation. The average number of H-bond generated 
by CYLD-ubiquitin in mutant complexes R830K and 
H827R was estimated to be ∼389 and ∼386, respectively, 
during the period of 100-ns simulation (Fig.  8). This 
analysis significantly depicts the impact of amino acid 
substitution on the backbone structure of the protein–
protein complexes.

3.11  Principal component analysis
The principal component analysis model was constructed 
based on the analysis of the various structural and energy 
profile such as bond distances, bond angles, dihedral 
angles, planarity, van der Waals energies, and electro-
static energies getting from MD simulation analysis. 
Three training sets were taken into consideration for the 
further analysis. The first and second principal compo-
nents (PC1 and PC2) of this PCA model cover 88.4% of 
the proportion variance. The score plot exhibits three dif-
ferent clusters for wild-type-ubiquitin complex (green), 
mutant H827R-ubiquitin complex (blue), and mutant 
R830K-ubiquitin complex (red) where PC1 covers 66.7% 
and PC2 covers 21.7% of the variance (Fig. 9). Different 
cluster formation for three training sets signifies fluctua-
tions that occurred during MD simulation. Significant 
fluctuations were observed when wild type is compared 
with both mutant types. This analysis indicated that point 
mutations directed to the alterations of the structural and 
energy profile of the CYLD-ubiquitin complexes. There-
fore, mutations in the 827th and 830th position of the 
CYLD resulted in the aberrant interaction pattern of the 
CYLD with ubiquitin.

3.12  Protein–protein network analysis
The functional interaction pattern of CYLD protein with 
other proteins in different biological pathways was pre-
dicted using the STRING database (Fig. 10). CYLD func-
tionally interacts with TRAF2, TRAF6, IKBKG, RNF31, 
TNFRSF1A, DDX58, RIPK1, BIRC3, UBC, UBE2K, 
UBE2S, RPS27A, UBA52, RAD18, RPL8, RPS16, RPL19, 

Fig. 8 Molecular dynamic simulation analysis performed by YASARA. (a shows Rg analysis of the backbone structure of the protein–protein 
complexes over 100 ns, and b indicates H-bond analysis of the structure of protein–protein complexes over 100 ns)
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Fig. 9 Principal component analysis. (The PCA model generated score plot consists of three different clusters: wild-type CYLD-ubiquitin complex 
(green), mutant (H827R) CYLD-ubiquitin complex (blue), and mutant (R830K) CYLD-ubiquitin complex (red) where each dot indicates one time 
point)

Fig. 10 Protein–protein interaction network of CYLD protein constructed by the STRING database
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RPL35, RPS12, and RPL18A and thereby plays various 
significant biological roles (S9 Table). This interaction 
pattern of CYLD may be disturbed if any deleterious 
change occurs in CYLD protein. The data about degree 
of connectivity, average shortest path length, between-
ness centrality, and closeness centrality of all the related 
protein of CYLD were predicted by Cytoscape (S8 Table). 
The highest number of interactions was seen with UBC 
(ubiquitin C) and UBA52 (ubiquitin A-52 residues ribo-
somal protein fusion product 1) with degree 20. Muta-
tion can hamper all those interactions, highlighting the 
deleterious effect of nsSNPs of CYLD.

4  Discussion
CYLD is known as a deubiquitinase gene that exhibits 
tumor suppression activity in humans [2]. Mutation in 
CYLD is generally associated with many cancer types 
such as familial cylindroma, melanoma, salivary gland 
tumor, and breast cancer [2]. Investigation of the impact 
of point mutation on the structural and functional activ-
ity of CYLD protein is a difficult task. Application of 
various bioinformatics tools makes this analysis easier. 
In this study, we exploited the damaging consequences of 
nsSNPs of CYLD to study the effect on its structure and 
function using different computational approaches. We 
started our analysis by retrieving 446 nsSNPs recorded in 
NCBI database for CYLD gene. Subsequently, we exam-
ined these nsSNPs using seven different computational 
methods: PANTHER, PROVEAN, PREDICT SNP, Poly-
Phen-2, PhD-SNP, PON-P2, and SIFT for the screening 
out of high-risk nsSNPs. Each algorithm ranked nsSNPs 
based on their deleterious effect taking into considera-
tion parameters such as sequence homology, structural 
homology, conservancy, and biological and physical 
characteristics of amino acids. The integration of differ-
ent algorithms often serves as powerful tools to prioritize 
the functional SNP candidates [65]. Considering this, we 
focused on 18 significant nsSNPs of CYLD commonly 
predicted as deleterious by all the seven tools. InterPro, 
domain identification program, revealed that two nsSNPs 
were located at Cap-Gly domain required for the inter-
action with NEMO/IKKγ and TRAF2 [17], whereas the 
rest of the nsSNPs were positioned on the USP domain 
responsible for its deubiquitinase activity [18]. A study 
reported that mutation in conserved regions leads to the 
greater reduction in protein stability compared to non-
conserved regions [66]. Therefore, we analyzed the con-
servation profile of our targeted nsSNPs; from there, we 
only considered highly conserved residues with the help 
of ConSurf server. Several studies demonstrate that alter-
ation in protein stability due to SNP can cause degrada-
tion, misfolding, and coagulation in a protein leading to 
structural and functional impairments [67, 68], and we 

have found 14 destabilizing residues among 18 nsSNPs in 
our study when we used I-Mutant and SDM tools.

Next, we approached to determine the profile of struc-
tural modifications caused by these destabilizing nsSNPs 
through the comparative structural analysis for both 
native and mutant protein models using Phyre2 homol-
ogy model prediction server. TM-align tool determined 
the structural deviations of mutant models in compari-
son with the native protein. According to studies [46, 69], 
TM-score determines the topological similarity, whereas 
RMSD indicates average distance between α-carbon 
backbones of wild-type and mutant proteins. Greater 
RMSD value signifies greater deviation, and lower TM-
score means higher dissimilarities between wild and 
mutant protein models. We furthered 13 nsSNPs based 
on higher RMSD value and lower TM score, and we 
found in one study [70] that they also selected nsSNPs 
based on higher RMSD. In our study, among 13 nsSNPs, 
highest RMSD value (2.21) was found in highly con-
served H827R, and lowest TM-score (0.84714) was dis-
played by highly conserved R830K. I-TASSER generated 
confidence score by remodeling more reliable wild-type 
and mutant-type proteins. We also investigated rela-
tive terms in SWISS-MODEL such as solvation, torsion, 
QMEAN, and Cβ value comparing wild-type and mutant 
models. Project HOPE program provides deep insight 
on the detrimental effect of point mutation on the struc-
tural configuration of a protein. Analysis showed that 
wild-type residues replaced by smaller mutants result in 
the empty space formation due to the loss of significant 
interactions in case of R830K. Besides, misfolding and 
repulsion can cause when charge was added to H827R. 
The influence of deleterious nsSNPs on the energy mini-
mization state of the CYLD protein determination is 
fundamental as protein achieves its stable conformation 
with lower energy after energy minimization according 
to a study [71]. On the contrary, structural changes due 
to mutation can restraint the protein to be stable eas-
ily. Findings showed that the total energy for the native 
CYLD protein was − 20,130.191 kJ/mol after energy mini-
mization. H827R mutant showed remarkable increase in 
energy − 15,956.584 kJ/mol than wild type.

Furthermore, we performed molecular docking 
between CYLD PDB id:2VHF (583aa-956aa), and ubiqui-
tin as binding interactions pattern among them has sig-
nificant role in tumor suppressor activity of CYLD [10]. 
Studies showed that decreasing binding affinity due to 
mutation signifies impairment of the binding interac-
tion pattern [72, 73]. Similarly, our analysis also revealed 
that 4 nsSNPs: L781P, P698T, H827R, and R830K mutant 
complex showed lowest binding affinity of − 13.4, − 13.0–
12.8, and − 12.7  kJ/mol, respectively, when compared 
with wild type (− 14.6  kJ/mol). We observed higher 
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dissociation constant for these four nsSNPs (S6 Table) 
compared to the native CYLD which also substantiated 
weak binding interactions between ubiquitin and CYLD 
mutant protein complex. Mutation 3D specifically veri-
fied that mutation in H827 and R830 can have strong 
association with cancer, whereas no association was 
found for L781P and P698T.

We performed MD simulations to evaluate the 
dynamic behavior of our CYLD-ubiquitin complex in 
an aqueous environment for 100  ns. Simulation was 
executed with a time-step interval of 2.5 fs [74, 75]. This 
analysis mainly focused on the relative structural devia-
tion of the H827R and R830K in comparison to wild-
type CYLD protein. Mentionable variations in RMSD 
(root-mean-square deviation) value were observed in 
H827R and R830K compared with the wild-type pro-
tein. Wild-type CYLD exhibited variations in RMSD 
value up to 10.5  ns and then became stable within 
range between 2.9 and 4.4 Å during the simulation 
time frame. In case of H827R, we found highest peak at 
80 ns with RMSD value 6.275 Å indicated that mutant 
H827R became unstable throughout the whole simula-
tion period. On the other hand, we found highest peak 
at 71 ns with RMSD value 6.087 Å in case of R830K. 
Average RMSD value for mutants H827R (4.9575 Å) 
and R830K (5.278 Å) was much higher than the native 
CYLD (3.388 Å). These results indicated that H827R 
and R830K lead to the structural variation of the CYLD 
protein as higher RMSD value signifies structural dis-
tance of protein or protein complex. After that, we ana-
lyzed root-mean-square fluctuation (RMSF) of CYLD 
and its two mutants to evaluate mutation-causing 
fluctuations in structural part of a protein compar-
ing with the actual structure of a protein. We observed 
higher residual fluctuation in H827R rather than R830K 
when referenced with native CYLD. We found highest 
RMSF 9.66 Å at positions LYS179 (762 aa of CYLD) for 
H827R. In case of R830K, higher RMSF value 8.22 was 
found at 316 (899 aa) residue.

Rg (radius of gyration) analysis determined the com-
pactness of CYLD protein and thereby signified the 
folding rate as well as stability of that protein. We found 
that Rg values of CYLD protein complex ranged from 
25.27 to 26.38 Å where as in case of H827R and R830K, 
Rg ranged between 25.17 to 26.71 Å and 24.849 to 
25.99 Å, respectively. H827R mutant showed higher Rg 
value, and R830K showed less Rg value compared with 
wild type. From this, we can hypothesize that the com-
pactness of the CYLD protein is probably affected by 
mutation at position 827 than at 830. Finally, H-bond 
analysis of CYLD was performed. A study revealed that 
the folding and stability of a protein can be affected by 
any change in H-bond formation [76]. Average H-bond 

of native CYLD-ubiquitin displayed ∼392 H-bonds, 
whereas the average H-bond generated by CYLD-
ubiquitin in mutants R830K and H827R was calculated 
to be ∼389 and ∼386, respectively. Loss of H-bond in 
mutant complex signified its weak binding interaction 
with ubiquitin as well as its structural deformation. 
We found several studies [70, 77–79] where they did 
not performed molecular docking and MD simulations 
for observing changes in interaction pattern as well 
as stability of a protein after point mutation. Princi-
pal component analysis obtained from MD simulation 
hints at the aberrant structural and functional activ-
ity of CYLD due to the point mutation at 827 and 830 
position. In several studies [58, 80], they found greater 
deviation in structure and energy profile by comparing 
wild and mutants, and we also found deviation in struc-
ture and energy profile by comparing wild-type CYLD 
with H827R and R830K mutants. We also examined 
the interacting partners of CYLD in various biological 
pathways through network analysis and suggested that 
H827R and R830K mutants can disturb those pathways.

CYLD performs its tumor suppressor activity by disas-
sembling k-63 ubiquitin chain [20, 81] where interaction 
between C-terminal USP domain and ubiquitin chain 
is the prerequisite for this function. Mutation in USP 
domain can interrupt their Lys63-linked polyubiquitin 
cleavage activity resulting in cancer [1]. In our current 
study, we tried to short-list deleterious SNP disrupting the 
total catalytic activity and binding affinity of USP domain 
of CYLD and their strong association with cancer.

Throughout the study, a consistent workflow was devel-
oped for the reproducibility of this in silico deleterious 
SNPs prediction and multiple algorithms; tools were 
used to assess each step to increase the accuracy of the 
approaches by removing the artifacts from each tool.  
SNPs in the genome are thought to be  critical in regard 
to functional and structural effects of proteins involv-
ing cellular metabolism, gene expression and disease 
susceptibility etc. This computational prediction-based 
approach would provide deep insights and faster out-
comes for experimental validation.

In conclusion, mutation in tumor suppressor CYLD has 
been linked to a variety of cancers. Therefore, determin-
ing the effect of point mutations on the structural and 
functional activities of the CYLD protein is a challenging 
task. The use of numerous bioinformatics tools simpli-
fies this assessment. In our present study, we employed 
multiple computational tools to investigate the harm-
ful consequences of the mutant variant of CYLD on its 
structure and function. As mutant CYLD is associated 
with different cancer types, our results will be useful in 
the development of future diagnostic and research on 
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CYLD mutations. Our findings however required in vitro 
and in vivo experimental validation.
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