
Yamagata and Yamada ﻿
Genomics & Informatics            (2024) 22:7  
https://doi.org/10.1186/s44342-024-00011-6

METHODOLOGY Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Genomics & Informatics

Survey on large language model annotation 
of cellular senescence from figures in review 
articles
Yuki Yamagata1,2*    and Ryota Yamada3    

Abstract 

This study evaluated large language models (LLMs), particularly the GPT-4 with vision (GPT-4 V) and GPT-4 Turbo, 
for annotating biomedical figures, focusing on cellular senescence. We assessed the ability of LLMs to categorize 
and annotate complex biomedical images to enhance their accuracy and efficiency. Our experiments employed 
prompt engineering with figures from review articles, achieving more than 70% accuracy for label extraction 
and approximately 80% accuracy for node-type classification. Challenges were noted in the correct annotation 
of the relationship between directionality and inhibitory processes, which were exacerbated as the number of nodes 
increased. Using figure legends was a more precise identification of sources and targets than using captions, 
but sometimes lacked pathway details. This study underscores the potential of LLMs in decoding biological mecha-
nisms from text and outlines avenues for improving inhibitory relationship representations in biomedical informatics.
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1  Introduction
Chronic diseases associated with aging pose a signifi-
cant challenge to an aging society [1]. We developed a 
Homeostasis Imbalance Process Ontology (HoIP) [2] 
based on manual annotation to elucidate the fundamen-
tal mechanisms, particularly cellular senescence. How-
ever, innovative solutions are required to streamline this 
process in terms of scalability and facilitation of updates. 
In response to these challenges, this study investigates 
the efficacy of large language models (LLMs) using the 
GPT-4 with vision (GPT-4  V) and GPT-4 Turbo (gpt4-
1106-preview) [3] for annotating figures present in 
review articles.

This study aimed to explore the capabilities of LLMs in 
the systematic categorization of various biomedical fac-
tors and in annotating the directionality of causal rela-
tionships and regulatory mechanisms, with a particular 
focus on cellular senescence. Our approach contributes 
to streamlining the annotation process, enhancing the 
accuracy and efficiency of the data, and clarifying how 
LLMs interpret data in the study of aging and cellular 
senescence.

2 � Methods
This study explored annotations using LLMs in figures 
from review articles depicting cellular senescence, from 
basic biology to medical domains involving diverse 
molecules and processes. Figure 1 presents an overview 
of the LLM annotation process used in this study. The 
PubMed database was searched for open-source review 
articles with downloadable figures. After reviewing 409 
articles, 4 were selected [1, 4–6] based on their diverse 
contents and number of references. From these studies, 
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we selected nine manually annotated figures to pre-
pare the dataset for validation. We conducted zero-shot 
learning experiments using OpenAI’s GPT-4  V API to 
investigate the ability of LLMs to explain the factors 
related to cellular senescence, as depicted in the figures. 
Next, we performed prompt engineering to generate 
detailed descriptions (captions) of cellular senescence. 
After converting all figures into captions, the main 
experiments were performed using GPT-4 Turbo (gpt-
4–1106-preview). All experiments were performed five 
times. Initially, the labels for entities associated with 
cellular senescence were extracted. Subsequently, the 
nodes were classified into five categories relevant to the 
biological phenomena: molecules, compounds, cells, 
processes, and diseases. Furthermore, nodes with iden-
tified sources and targets, along with positive/negative 
regulation, were annotated to investigate their ability 
to understand the mechanisms. The performance of 
the LLM annotations was evaluated against a dataset 
of manual annotations using precision, recall, and F1 
score metrics for Steps 1 and 3, and accuracy for Steps 
2 and 4.

3 � Results and discussion
In this study, node-type classification refers to node char-
acterization into five distinct categories. These categories 
included molecules, compounds, cells, processes, and 
diseases. Further, relation directionality involves identify-
ing the direction of upstream or downstream networks, 
specifying which nodes serve as sources, and which are 
targets. Positive/negative identification refers to the regu-
lation of the process between the identified sources and 
targets; positive (promoting or activating) or negative 
(inhibiting). In preliminary experiments using GPT-4 V, 
we tested the ability of LLMs to decipher molecules and 
cellular senescence mechanisms using zero-shot learn-
ing. These trials indicated the proficiency of LLMs in 
identifying well-known molecules and outlining senes-
cence-related processes. Nonetheless, the models strug-
gled with the figure elements, particularly the arrows. 
By refining our prompts  (Fig.  2), we improved the gen-
eration of detailed descriptions and converted images 
into text (captions) for further annotation (Fig. 3). There-
fore, we have set the stage for more advanced annotation 
tasks. Tables 1 and 2 present an overview of experimen-
tal results. The experiments demonstrated that the LLMs 

Fig. 1  Overview of the large language model (LLM) annotation process for figures in review articles. Our LLM annotation task is based 
on the captions from figures in cellular senescence review articles created by GPT-4 V. Subsequently, the main experiment consists of four steps: 
label extraction, node-type identification, directionality, and relationship analysis using GPT-4 Turbo
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effectively extracted labels from the figures, achieving a 
precision of 0.76, recall of 0.69, and F-measure of 0.72. 
Several of the identified errors were attributed to com-
pound words. The node-type identification experiment 
yielded an accuracy of > 80%, indicating the capability of 
correctly categorizing entities. When classifying entities, 
errors were observed when categorizing molecules and 
processes. Cytokines such as IL-6 and IL-8 were mistak-
enly identified as processes, whereas complexes such as 
CDK cyclins were incorrectly classified as processes. Fur-
thermore, at times, “senescence” was erroneously anno-
tated as a cell, possibly due to the frequent descriptions 
of “senescence cell” in biomedical articles, which may 
have influenced the LLM’s learning. In addition, entities 
related to inflammation, which should have been cor-
rectly categorized as pathological processes, were mis-
classified as diseases. Thus, these results highlight the 
challenges faced by LLM in accurately distinguishing 
closely related biological entities, underscoring the need 
for further refinement of their classification tasks.

While annotating relation directionality, it was 
observed that the performance of the LLMs in identi-
fying relationships decreased as the number of nodes 
increased. Across all the diagrams, the average metrics 
were as follows: precision, 0.46; recall, 0.28; and F1 score, 
0.34. However, upon excluding diagrams containing > 30 
relationships, the performance metrics were notably 

Fig. 2  Prompt engineering example for review article figures. This figure illustrates the prompt engineering approach used to improve 
the annotation capabilities of large language models (LLMs)

Table 1  Step-wise performance of large language model (LLM) 
annotation metrics. Precision, recall, and F1 score for Steps 1 and 
3, focusing on label identification and relation directionality

Step Precision Recall F1 score

Step 1: Label identification 0.76 0.69 0.72

Step 3: Relation directionality 0.46 0.28 0.34

Step 3: Relation directionality 
(figures with < 30 nodes)

0.72 0.57 0.64

Table 2  Step-wise performance of large language model (LLM) 
annotation metrics. Accuracy for binary classifications in Step 2 
and Step 4, assessing correct identifications of node types and 
regulation types, simplified by specific types

Step Accuracy

Step 2: Node-type classification 0.84

Process 0.83

Molecule 0.84

Compound 0.57

Cell 1.0

Disease 0.98

Step 4: positive/negative identification 0.82

Positive regulation 0.85

Negative regulation 0.66
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improved: precision, 0.72; recall, 0.57; and F1 score, 0.64. 
The initial annotations across all diagrams indicated a 
lower recall, which may be attributed to the decreased 
ability of the models to correctly identify relevant rela-
tionships in diagrams with a higher density of nodes.

Notably, incorrect interpretations, such as the inversion 
of source and target between “Senescence” and “Chronic 
Inflammation,” occurred even with a small number of 
nodes. This may be attributed to the LLM’s reliance on 
extensive background knowledge rather than the figure 
itself, as evidenced by the LLM-generated caption derived 
from the figure stating, “Chronic inflammation can promote 
senescence through the release of inflammatory cytokines.”

To further evaluate the annotation capabilities of 
LLMs, we conducted additional experiments to assess 
their ability to recognize and annotate complex biologi-
cal relationships in the figure legends. We used figure leg-
ends instead of captions, for example, “Senescence can, in 
turn, drive the consequential aging hallmarks in response 
to damage: stem cell exhaustion and chronic inflamma-
tion.” Consequently, identification of sources and tar-
gets of the nodes in the figure were accurately identified 
using the LLM. Furthermore, for diagrams with many 
nodes, we observed that recognizing the direction of the 
source–target relationship can be significantly improved 
by utilizing the detailed description in the legends, which 
serve as viable substitutes for captions. However, many 
legends frequently oversimplify or neglect the interme-
diate relationships described in the diagrams. In par-
ticular, the legends tend to directly link well-established 

molecules and processes. Consequently, although the leg-
ends effectively summarize the figure, they may fall short 
of exploring the mechanisms, particularly when detailed 
pathways are absent.

While annotating relationships, a significant challenge 
has emerged in accurately identifying inhibitory relation-
ships, often symbolized by “-|” in biomedical diagrams. 
This difficulty in translating the visual representations of 
inhibition from figures into precise annotations under-
scores the broad issue of interpreting the complicated 
mechanisms across our experiments. The statistical anal-
ysis highlighted a notable disparity in accuracy between 
positive and negative relationships. The mean positive 
accuracy exceeds 80%, significantly surpassing the mean 
negative accuracy of < 70%. To explore this further, we 
conducted an additional experiment with ChatGPT, 
focusing on understanding its complex pathways, includ-
ing multiple inhibition relationships. The core question 
was whether the meaning of inhibition is fully under-
stood. To address this issue, we provided textual expla-
nations within our prompts, clarifying that the inhibition 
of an inhibitory factor logically results in its promotion. 
The results revealed that LLMs understand that inhibit-
ing an inhibitory relationship acts as a promoter and that 
pathways with multiple inhibitory relationships can be 
explained consistently. This finding indicates that despite 
the initial difficulties with direct recognition from fig-
ures, LLMs can interpret complex relationships through 
textual information, thereby demonstrating their poten-
tial to interpret intricate biological mechanisms.

Fig. 3  Caption generation example for a review article figure. This figure demonstrates an example of captions created by large language models 
(LLMs) from Fig. 2 of one review article [1]
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Our study investigated another aspect of the LLMs’ abil-
ity to infer relevant background knowledge, which was not 
explicitly mentioned in the figures. In one diagram, only 
the direct relationships between molecules such as p16, 
p21, p53, p14, and p27 and growth arrest are depicted. 
Interestingly, LLM expanded on this by stating: "Negative 
relationships: The presence of p16, p21, p53, p15, p14, and 
p27 reinforces growth arrest, preventing cell proliferation." 
Although this interpretation deviates slightly from the 
explicit content of the diagrams, it serves as a helpful con-
tribution to the exploration of cellular senescence mecha-
nisms, illustrating the ability of the LLM to infer beyond 
the immediate data presented, such as human experts in 
the domain, thereby clarifying the possible mechanisms.

4 � Conclusion
In summary, this study offers an in-depth analysis of 
entity classification, directional annotation, and posi-
tive/negative regulation annotation within cellular 
senescence mechanisms through multiple experimen-
tal trials. Although LLMs exhibit promising capabili-
ties in certain aspects of classification and annotation, 
to improve classification task accuracy in LLMs, espe-
cially in distinguishing between categories such as pro-
cesses and molecules, an embedding technique should 
be explored. Such an embedding technique may signifi-
cantly reduce categorical ambiguities when discerning 
differences between terms used in articles concerning 
immunological and inflammatory contexts, where, spe-
cifically, cytokines such as IL-6 and IL-8 are extensively 
discussed. The accurate identification and annotation of 
inhibitory relationships remains a significant challenge. 
Future research should focus on enhancing the ability 
of models to accurately interpret and integrate complex 
biomedical knowledge, with particular emphasis on the 
precise representation of inhibitory relationships in bio-
logical processes. Ontologies have emerged as prom-
ising strategies to address these challenges. For this 
strategy, we used the Monarch Initiative plugin [7] for 
ChatGPT to annotate the Protein Ontology [8] terms of 
13 well-known molecules. These results yielded anno-
tations for various species. In the following prompt, 
specifying the requirements for human molecules, the 
LLM correctly annotated 11 out of the 13 molecules. 
These discrepancies pertain to species mismatch and 
entirely different molecular identifications. We will fur-
ther scrutinize the remaining molecules to refine the 
annotations. In the future, we intend to leverage LLMs 
to reference these existing ontologies and enhance the 
accuracy and depth of the annotations. Future research 
should improve the accuracy and refine classification 
tasks using ontology hierarchies. Gradually, the under-
standing and classification accuracy of the LLM will be 

refined by generalizing entities, that is, superclasses, and 
subsequently classifying subclass entities into additional 
categories. This approach underscores the potential of 
integrating LLMs with structured biomedical knowl-
edge using ontologies to improve the understanding and 
representation of complex biological phenomena.
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