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Abstract 

Background  To what degree a string of symbols can be compressed reveals important details about its complexity. 
For instance, strings that are not compressible are random and carry a low information potential while the opposite 
is true for highly compressible strings. We explore to what extent microbial genomes are amenable to compression 
as they vary considerably both with respect to size and base composition. For instance, microbial genome sizes vary 
from less than 100,000 base pairs in symbionts to more than 10 million in soil-dwellers. Genomic base composi‑
tion, often summarized as genomic AT or GC content due to the similar frequencies of adenine and thymine on one 
hand and cytosine and guanine on the other, also vary substantially; the most extreme microbes can have genomes 
with AT content below 25% or above 85% AT. Base composition determines the frequency of DNA words, consisting 
of multiple nucleotides or oligonucleotides, and may therefore also influence compressibility. Using 4,713 RefSeq 
genomes, we examined the association between compressibility, using both a DNA based- (MBGC) and a general 
purpose (ZPAQ) compression algorithm, and genome size, AT content as well as genomic oligonucleotide usage vari‑
ance (OUV) using generalized additive models.

Results  We find that genome size (p < 0.001) and OUV (p < 0.001) are both strongly associated with genome redun‑
dancy for both type of file compressors. The DNA-based MBGC compressor managed to improve compression 
with approximately 3% on average with respect to ZPAQ. Moreover, MBGC detected a significant (p < 0.001) compres‑
sion ratio difference between AT poor and AT rich genomes which was not detected with ZPAQ.

Conclusion  As lack of compressibility is equivalent to randomness, our findings suggest that smaller and AT rich 
genomes may have accumulated more random mutations on average than larger and AT poor genomes which, 
in turn, were significantly more redundant. Moreover, we find that OUV is a strong proxy for genome compressibility 
in microbial genomes. The ZPAQ compressor was found to agree with the MBGC compressor, albeit with a poorer 
performance, except for the compressibility of AT-rich and AT-poor/GC-rich genomes.
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1 � Background
Microbial genomes vary substantially with regard to 
genome size and base composition [1]. Due to Char-
gaff’s parity rules [2], base composition in microbes can 
be summarized as the percentage % of (A)denine% + (T)
hymine% (%AT), due to their similar frequencies. Alter-
natively, it can be summarized as 100%—(%AT) = (G)
uanine% + (C)ytosine% (%GC). In general, genomic %AT 
(AT) is negatively associated with genome size [3, 4]. 
Within microbial species, however, genomic AT has been 
found to increase with genome size [5]. While free-living 
and soil dwelling microbes tend to have larger genomes 
with less AT (GC rich) [6], intracellular symbionts [7], 
and to a lesser extent pathogens [8], have smaller, AT rich 
genomes due to reductive evolution [9]. A negative asso-
ciation has also been found between genomic AT con-
tent and oligonucleotide frequencies, sometimes referred 
to as oligonucleotide usage variance (OUV) [10–12], 
i.e., genome-wide frequencies of “DNA words” consist-
ing of a fixed number of nucleotides (usually 3 (codons) 
[13] or 4 (tetranucleotides)) [11]. This means that the 
frequency of genomic DNA words is more associated 
with base composition the more AT rich the bacterial 
genomes are [14]. Here, OUV is the averaged sum of the 
squared differences between all possible genomic tetra-
nucleotide frequencies subtracted by their corresponding 
expected tetranucleotide frequencies. As such, OUV lit-
erarily describes the variance of genomic tetranucleotide 
frequencies. The expected tetranucleotide frequencies 
are estimated by the respective tetranucleotide word’s 
individual genomic nucleotide frequencies. That is, if 
f(AGCT) represents the genomic frequencies of the tetra-
nucleotide word “AGCT,” then the estimated expected 
frequency of the word “AGCT” will be f(A)f(G)f(C)f(T). 
OUV thus represents the average squared difference, or 
variance, taken over the frequencies of all 44 = 256 possi-
ble combinations of tetranucleotide words subtracted by 
the expected occurrence of the corresponding tetranucle-
otide, e.g., (f(AGCT) – f(A)f(G)f(C)f(T))2 [12]. Genomes 
with biased tetranucleotide frequencies, for one reason 
or another, will have higher OUV as some DNA words 
will differ greatly from what is expected from the base 
composition (i.e., AT/GC content) alone. High OUV will 
thus likely represent genomes having been subjected to 
strong selective pressures, either positive or negative [15]. 
Organisms with low OUV, i.e., oligonucleotides that are 
more predictable from genomic base composition, have 
been subjected to more relaxed selective pressures [15]. 
It has been shown that AT rich genomes tend to consist 
of oligonucleotides that have more similar frequencies to 
that of the product of the corresponding single nucleo-
tide frequencies and thus tend to have lower OUV than 
AT poor microbes [11]. AT poor (sometimes referred 

to as GC rich) microbes, on the other hand, often have 
more selective tetranucleotide word usage than AT rich 
ones resulting in higher OUV [15]. These discrepancies 
between AT rich and AT poor genomes, with respect to 
genome-wide tetranucleotide word frequencies, have 
been linked to selective pressures [11]; AT rich genomes 
appear historically to have been subjected less to selec-
tive pressures than AT poor genomes [16, 17]. For micro-
bial symbionts, which are often AT rich, this might be, 
to some extent, explained by easier access to metabolites 
from the host [18] and/or lower effective population size 
[19]. It is also anticipated that genomes being subjected 
to relaxed selective pressures, such as symbionts, may 
accumulate genome-wide mutations to a larger degree 
than organisms subjected to strong selective pressures 
[7]. Accumulation of genome-wide random mutations is 
therefore assumed to result in tetranucleotide word fre-
quencies more in line with AT/GC content [12].

As mentioned above, AT rich genomes have often 
been found to be more associated with symbiotic and 
pathogenic microbes with the latter having slightly larger 
genomes [8]. AT poor genomes are often found in envi-
ronments outside of the host [13]. Since genomic AT 
content correlates negatively with nitrogen abundance 
[20], many microbial species with AT poor genomes are 
often found in soil [13]. Hence, it is assumed that OUV 
differences are reflective of the selective pressures medi-
ated by the respective environments [12]. Non-host envi-
ronments are likely challenging requiring a diverse set of 
genes for utilizing different types of nutrients for survival. 
Stronger selective pressures, in particular purifying selec-
tion and/or frequent bottleneck events, may therefore 
favor species that are more competitive with the ability 
to survive in diverse and dynamic environments. Under 
such circumstances, there could be a strong selection 
for more specific DNA patterns resulting in more biased 
genome-wide tetranucleotide word frequencies, reflected 
by higher OUV [21].

The extent to which a genome can be compressed 
may reveal important characteristics about its complex-
ity [22]. For instance, genomes that can be compressed 
carry a larger information potential than those that can-
not, which, in turn, are more random with a lower infor-
mation potential [23]. Genome-wide oligonucleotides 
are more easily compressed if they exhibit specific pat-
terns or some degree of systematic bias. Bias resulting 
from selection for specific genome-wide DNA patterns 
is reflected by higher OUV [21]. The genomes of such 
organisms could thus be easier to compress than organ-
isms with low OUV that do not show any genome-wide 
DNA patterns. In this sense, AT poor/GC rich genomes, 
with higher OUV, are expected to carry a higher informa-
tion potential than more AT-rich genomes.
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The most common general-purpose compression algo-
rithm (often referred to as LZ after the inventors Abra-
ham Lempel and Jacob Ziv [24]) attempts to reduce a 
string of data by searching for repeating patterns or sub-
strings and extending these as much as possible. Repeat-
ing substrings or patterns are then indexed, i.e., replaced 
by smaller symbols, thereby reducing string size. Finally, 
a dictionary containing the symbols representing spe-
cific sub-strings is added to the compressed file for use 
in decompression. If a string contains many different 
patterns that require symbols of varying size for rep-
resentation, the Huffman algorithm will make sure that 
the most frequent patterns, or sub-strings, are assigned 
progressively shorter representations [25]. The size of 
such representations therefore correlates negatively with 
occurrence frequency. Hence, strings consisting of many 
repetitive patterns are easier to compress than strings 
containing fewer such patterns [24]. Most modern gen-
eral-purpose compressors consist of several algorithms 
and steps to reduce the size of a string of data [26].

Recently, compression algorithms were introduced 
that take DNA specific properties into account [26]. In 
particular, the Multiple Bacterial Genome Compres-
sor (MBGC) considers DNA patterns and their reverse 
complements [27]. As such, MBGC achieves greater 
compression ratios for DNA-based strings  than other 
non-DNA based compressors.

In theoretical computer science, an equivalence rela-
tion has been established between compressibility and 
a definition of randomness [28]; the more random and 
unpredictable a string of letters (such as A, G, C and T) 
is, the harder it is to compress. A string consisting of a 
few substring patterns is therefore more difficult to com-
press. As such, by exploring the redundancy of micro-
bial genomes using AT content and OUV, a measure of 
genomic randomness is also attained.

Since AT content in microbial genomes is, in one way 
or another, associated with genome size and OUV, the 
purpose of this project was to examine whether this 
association could also be extended to genome sequence 
complexity as measured by compression rate. Hence, we 
wanted to explore if there is an association between AT, 
genome size and OUV on one hand and the compress-
ibility of the corresponding microbial  genome on the 
other. To test this hypothesis, 4713 microbial genomes, 
representing 1508 bacterial genera, were downloaded 
from the NCBI RefSeq database to minimize species- and 
strain-specific bias. These genomes were compressed 
using two different algorithms: ZPAQ, which is widely 
regarded as the best general purpose compression algo-
rithm [26], and MBGC, a recent compression algorithm 
specialized for microbial genomes [27]. The compression 
rates obtained from both these algorithms for the 4713 

RefSeq genomes were subsequently regressed on corre-
sponding genomic AT content, OUV, and genome size 
using a generalized additive model [29]. The models were 
also adjusted for taxonomic relatedness.

2 � Results
A total of 4713 microbial genomes were compressed 
using both ZPAQ and MBGC algorithms [26, 27]. Com-
pression rate was calculated as genome size divided by 
compressed genome size (see Fig. 1).

A generalized additive mixed-effects regression model 
(GAMM) was fitted with ZPAQ compression ratio as 
the outcome and genomic AT content, genome (chro-
mosome) size, and OUV as predictors represented by 
splines, to compensate for putative non-linear trends, 
for all 4713 genomes (see Fig. 2). In addition, taxonomic 
genus was added as a random effect with respect to 
genome size, which was established by examining differ-
ences with respect to the Akaike Information Criterion 
(AIC) goodness-of-fit statistic between tested models 
(see Table 1 and Section 4 for details) [30, 31].

The GAMM model indicated that there was a posi-
tive association between ZPAQ compression ratio and 
the three smooths representing respectively genomic AT 
content (p < 0.001), genome size (p < 0.001), and OUV 
(p < 0.001). Both genomic AT content and genome size 
exhibited substantial non-linear trends, as measured 
using effective degrees of freedom (edf, edf > 1 indicates 
non-linearity), with respective edf = 6.3 and edf = 7.1. 
OUV, on the other hand, did not exhibit any non-linear 
trends (edf = 1) and was found to be positively associ-
ated with the ZPAQ compression rate. The AIC for this 
model (see also Table  1) was − 3082 as compared to 
AIC = − 2053 for the model with the same predictors but 
without the random slope effects (i.e., lower AIC is bet-
ter). The AIC for the null model (the outcome regressed 
on a constant) was − 725.

An additional GAMM model was fitted with the same 
predictors and random effects as for the ZPAQ compres-
sion model above but with the MBGC compression rate 
as the outcome instead (see Fig. 3). Again, both AT con-
tent and genome size were found significant (p < 0.001) 
with considerable non-linear splines: edf = 7.1 and 
edf = 7.5, respectively. For this model, non-linear trends 
were also observed for the smooth representing the OUV 
predictor (edf = 2.0). Once more, the model obtained a 
better AIC (− 2997, see Table 1) when a random slope of 
genome size with respect to genus was included in addi-
tion to the fixed effect predictors AT, genome size, and 
OUV. For the same model but without the random slope, 
AIC = − 1993 and AIC = 445 for the null model (only 
outcome). It can be seen from both Figs.  2 and 3 that 
while there is a clear positive association with respect to 
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genome size and OUV on one hand and for both ZPAQ 
and MBGC genome compression ratios on the other, the 
trend with regards to AT content is less clear due to the 
parabolic trend.

Considering the results obtained above, we wanted to 
explore the relationship between the two compression 
algorithms. Not only does Fig.  4 indicate that MBGC 
is, on average, better at compressing genomes than the 
ZPAQ algorithm but also that AT poor/GC rich genomes 
are considerably better compressed with the MBGC 
method. To assess the difference between the compres-
sion algorithms more formally, the GAMM model with 
MBGC as the outcome was refitted but now with the 
ZPAQ compression rate as an additional linear covari-
ate, leaving the rest of the model, as described above, 
unchanged. The model describes the compression rate 

Fig. 1  Genomic compression rate. A distribution plot based on the genomic compression rate (genome size/compressed genome size, horizontal 
axis) for 4713 RefSeq genomes based on both ZPAQ and MBGC compression algorithms

Fig. 2  ZPAQ compression rate regressed on genomic AT content, genome size, and OUV. The figure shows the predictors (horizontal axis): 
AT content (edf = 6.3, p < 0.001) (A), genome size (edf = 7.1, p < 0.001) (B), and OUV (edf = 1, p < 0.001) (C), from a GAMM regression model 
with ZPAQ-based genomic compression rate as the outcome (vertical axis). Effective degrees of freedom (edf ) indicate degree of smooth 
non-linearity for edf > 1. The model also included a random slope effect of genome size with respect to phylogeny (genus)

Table 1  AIC goodness-of-fit statistic for GAMM models

Model ZPAQ MBGC MBGC-ZPAQ

Full  − 3082  − 2997  − 21,157

No random effects  − 2053  − 1993  − 20,868

Null  − 725 445 445
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differences between the algorithms with regard to AT 
content, genome size, and OUV (see Fig.  5B–D). AIC 
improved considerably with – 21,157 for this model 
(AIC = − 20,878 without random effects; see also Table 1). 
Figure  5 shows an approximate linear relationship 
between the compression ratios of MBGC and ZPAQ 
(p < 0.001) and that there is a, largely negative, associa-
tion between the MBGC compression rate and AT con-
tent (p < 0.001), suggesting that compression of AT poor 
genomes is visibly improved with the MBGC algorithm 
as compared to the ZPAQ algorithm. Slight improve-
ments over the ZPAQ algorithm can also be observed for 
genome size and OUV. Excepting the ZPAQ compres-
sion ratio, which was assumed to be linear, AT content, 
genome size, and OUV were all non-linear terms with edf 
equal to 7.7, 8.3, and 4.9, respectively.

It can also be noticed in Fig. 5 that the red dashed line, 
which represents a regression line with slope 1 and intercept 

0, was slightly lower than the (blue) regression line, which 
represents the model intercept (p < 0.001) for the MBGC 
compression ratio regressed on the ZPAQ compression rate 
(and adjusted for the other predictors and the random slope 
effect mentioned above). The model intercept indicates that 
the MBGC compressor achieves, on average, a 0.15 com-
pression ratio improvement (approximately 3%) over the 
ZPAQ compressor for microbial genomes.

3 � Discussion
OUV is a measure of genomic oligonucleotide frequency 
discrepancy from what is expected based only on the 
corresponding genomic nucleotide frequencies (i.e., 
genomic AT content). Surprisingly, OUV exhibited a 
strong correlation with both ZPAQ and MBGC compres-
sion ratios (see  respective  Figs.  2 and 3). Higher values 
of OUV indicate that oligonucleotide frequencies devi-
ate from expected based on the corresponding individual 

Fig. 3  MBGC compression rate regressed on genomic AT content, genome size, and OUV. The figure shows the predictors (horizontal axis): 
AT content (edf = 7.1, p < 0.001) (A), genome size (edf = 7.5, p < 0.001) (B), and OUV (edf = 2.0, p < 0.001) (C), from a GAMM regression model 
with MBGC-based genomic compression rate as the outcome (vertical axis). Effective degrees of freedom (edf ) indicate degree of smooth 
non-linearity for edf > 1. The model also included a random slope effect of genome size with respect to phylogeny (genus)

Fig. 4  MBGC and ZPAQ compression rate differences with regard to AT content. A Genomic compression ratios (vertical axis) for both MBGC 
and ZPAQ algorithms plotted against genomic AT content (horizontal axis). B The compression rate difference between the two algorithms (vertical 
axis) with regard to genomic AT content (horizontal axis)
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nucleotide frequencies. Low OUV, on the other hand, 
suggests that oligonucleotide frequencies are more pre-
dictive from the corresponding individual nucleotide fre-
quencies. Low OUV may thus be indicative of microbial 
genomes whose oligonucleotides have historically been 
subjected to relaxed selective pressures as compared to 
those with high OUV. Alternatively, low OUV may also, 
at least to some extent, be reflective of microbes with 
genomes containing a higher number of accumulated, 
presumably random, mutations.

Systematic bias in oligonucleotide usage may facilitate 
compression, particularly for the oligonucleotides that 
occur more frequently than expected. From the results 
presented here for the MBGC compression rates, this 
is more prevalent in AT poor genomes as seen in Figs. 4 
and 5. Indeed, a negative association has previously been 
found between OUV and AT content both within [14] 
and between genomes [11]. In general, AT poor genomes 
appear to have more homogeneous oligonucleotide usage 
[32]. As mentioned previously, biased genome-wide oligo-
nucleotide usage facilitates compression, something that 

is reflected in the results presented here. The fact that 
MBGC compressed AT poor genomes better than ZPAQ 
indicates that oligonucleotides occur with similar fre-
quency to their reverse complements increasingly more 
than for AT rich genomes. Hence, biased occurrence of 
genomic oligonucleotides is increasingly more similar 
to the occurrence of the corresponding reverse comple-
mented oligonucleotides in genomes with decreasing 
genomic AT.

As mentioned above, since OUV is lower in AT rich 
genomes, oligonucleotide frequencies are more corre-
lated to the frequencies of oligonucleotides composed 
of the corresponding individual nucleotides. In other 
words, genomic nucleotide frequencies tend to be more 
predictive of the genomic oligonucleotide frequencies. 
This could potentially indicate that species with AT rich 
genomes have historically accumulated more mutations 
than species with AT poor/GC rich genomes. Weaker 
purifying selection may thus have resulted in accumula-
tion of mutations in AT rich genomes to a much larger 
extent than in AT poor genomes.

Fig. 5  Regression model of compression rate differences. The figure demonstrates remaining effects of the MBGC compression rate (vertical axis) 
model after the effects from the ZPAQ compression rate model (A, horizontal axis) have been adjusted away with regression line colored in blue 
(red dashed line has intercept 0 and slope 1). B The remaining compression rate difference (vertical axis) on genomic AT content (horizontal axis, 
edf = 7.7, p < 0.001), C genome size (horizontal axis, edf = 8.3, p < 0.001), and D OUV (horizontal axis, edf = 4.9, p < 0.001). Genome size with respect 
to phylogeny (genus) was additionally included as a random slope. Effective degrees of freedom (edf ) indicate degree of non-linearity (i.e., edf > 1) 
in smoothing spline
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The performance of the ZPAQ algorithm was on aver-
age inferior to the MBGC algorithm, and no compression 
rate differences could be detected between AT rich and 
AT poor genomes. Both ZPAQ and MBGC algorithms 
are similar [27], except for the fact that MBGC takes into 
considerations oligonucleotides and their reverse com-
plements. The difference in compression rate observed 
with MBGC between AT rich and AT poor genomes 
must therefore point to trend differences in oligonucle-
otide usage. More specifically, AT poor genomes have 
more homogeneous frequencies of abundant oligonu-
cleotides and their reverse complements than AT rich 
genomes. For both compression algorithms, the lowest 
compression rates were nevertheless obtained for the 
genomes with similar AT/GC content (i.e., %AT/%GC 
approaching 50%), likely because more oligonucleotide 
frequencies are less predictable due to the similar nucleo-
tide individual frequencies.

AT rich microbial genomes tend to have smaller 
genomes than GC rich genomes [3]. The reason is not 
completely understood, but as was seen in Figs. 2 and 3, 
the smaller genomes are also harder to compress, at least 
those with genome sizes below 2 million base-pairs (mb). 
Symbionts and pathogens often have smaller genomes 
due to genome reduction [7]. Reduction in genome size 
is often preceded by an accumulation of mutations, which 
go hand in hand with increased AT content and number 
of pseudogenes [7]. The reason that mutation accumula-
tion is often positively associated with AT content is that 
most mutations are in the direction from cytosine to thy-
mine [16]. Microbes with AT poor genomes, however, 
are often found outside hosts and have larger genomes 
with a more diverse set of genes [33]. An important dif-
ference between adenine and thymine base-pairs on one 
hand and guanine and cytosine base-pairs on the other is 
that the latter pair requires three hydrogen bonds instead 
of two for the former. Hence, G-C base-pairs are stronger 
than A-T but require more stacking energy [19, 34]. This 
suggests that genomic AT content is, at least to some 
extent, also a historical record of selective pressures, or 
lack thereof, having acted on a species’ genome [33, 34].

Formal definitions of the concept of randomness are 
relatively recent [28]. It has been shown that randomness 
is equivalent with compression [35]; the more random a 
string of characters is, the harder it is to compress and 
vice versa. Random sequences are also connected to the 
notion of information. The more random a string of char-
acters is the less information potential is carried by it (i.e., 
entropy increases) [23]. It is shown here that microbes 
with smaller genomes (i.e., typically less than 2 mb) are 
harder to compress than microbes with larger genomes. 
Moreover, AT poor genomes are easier to compress than 

AT rich, at least with the MBGC compression algorithm. 
Finally, OUV, which is a measure strongly connected to 
information and entropy [21], is positively associated 
with both ZPAQ and MBGC compression rates. As such, 
smaller AT-rich genomes with lower OUV, often found 
to be host associated, tend to contain less information 
potential, at least with respect to Shannon entropy [21, 
23], than larger AT poor genomes with higher OUV typi-
cally found in the environment.

4 � Methods
In total 4829 microbial genomes were downloaded from 
NCBI’s RefSeq database [36] (https://​www.​ncbi.​nlm.​nih.​
gov/​refseq/) on February 23, 2024. To obtain a prokary-
otic population consisting of representative samples as 
much as  possible, only RefSeq genomes were consid-
ered. The genomic data consisted mostly of one genome 
from each species, excepting only species with substan-
tial genomic differences, within a genus. There were 114 
samples of Wolbachia endosymbiont, of which 113 were 
removed to reduce bias from a single species. Three addi-
tional genomes were removed due to an unusual high 
number of repeats resulting in over 30 times compres-
sion ratios for both ZPAQ and MBGC compressors. The 
exceedingly high compression ratios negatively impacted 
model assumptions and were therefore removed. These 
included an unnamed endosymbiont of the deep-
sea mussel Bathymodiolus septemdierum (accession: 
AP013042.1), Enterobacter lignolyticus (CP012871.1), and 
E. ludwigii (CP017279.1). In total, 4,713 genomes were 
available for analysis. All plasmids were removed from all 
species/genomes so that only chromosomes were used for 
the downstream analyses. Genomes consisting of multiple 
chromosomes were concatenated into one file.

The genomes were compressed into ZPAQ format using 
“lrzip” v. 0.651 with the –zpaq option [26]. For the MBGC 
compressor, “mbgc” v. 1.2.1 [27] was used (https://​github.​
com/​kowal​lus/​mbgc). Compression ratio was calculated 
as genome (i.e., total chromosome) size/compressed file 
size for each genome and for both compressors.

The AT content, OUV and genome size of these 
genomes were computed from in-house scripts; AT con-
tent as the number of A + T nucleotides/total number of 
A + T + G + C nucleotides. Genome size was calculated as 
the total number of nucleotides. OUV was calculated as 
the average squared difference between genomic tetra-
nucleotide frequencies and the product of its individual 
nucleotide frequencies. That is:

OUV =

1

N − 1
XYZW

f (XYZW )− f (X)f (Y )f (Z)f (W )
2

https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://github.com/kowallus/mbgc
https://github.com/kowallus/mbgc
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where XYZW represents nucleotides for every possible 
genomic tetranucleotide from the alphabet A, G, C and 
T (e.g., f(ATGC) and f(A)f(T)f(G)f(C)). N designates the 
number of possible oligonucleotide combination (i.e., 
N = 44 = 256 for tetranucleotides).

To explore whether genomic compression ratio, from 
either ZPAQ or MBGC algorithms, was associated with 
genome size, AT content, and OUV, we employed gen-
eralized additive mixed effects models (GAMM) [29] 
to account for putative non-linear associations between 
outcome and predictors and non-constant variance dif-
ferences between phylogenetic groups. It has previously 
been demonstrated that adding a taxonomic group below 
genus level has negligible impact on the models focus-
ing on genomic base composition in microbes [15, 37]. 
Genus was therefore added as a random intercept effect 
since there was only one genome for each species. A ran-
dom slope effect with respect to genome size resulted 
in the best fitted model. All models were first estimated 
using Maximum Likelihood (ML) so that it would be 
possible to assess and compare goodness-of-fit with 
the Akaike Information Criterion (AIC) [31]. The low-
est AIC indicates the best model. The best models for 
both regression models with compression ratio (ZPAQ/
MBGC) as outcome and genomic AT content, OUV, 
and genome size as outcome, together with a random 
slope of genome size with respect to genus, obtained 
AIC = − 3082 (ZPAQ)/ − 2997 (MBGC). Without ran-
dom effects but the same predictors the models obtained, 
AIC = − 2053 (ZPAQ)/ − 1993 (MBGC). For the null 
models, − 725 (ZPAQ)/445 (MBGC). To compare the dif-
ference between the MBGC compression ratio and the 
ZPAQ compression ratio with respect to the abovemen-
tioned predictors, the ZPAQ compression rate was added 
to the MBGC compression rate model described above 
as a linear predictor. Hence, Fig. 5 shows the remaining 
effects of MBGC compression rate model after adjust-
ing away the effects from the ZPAQ compression rate. 
All final mixed-effect type models were estimated using 
restricted maximum likelihood (REML); therefore, all 
results presented (except for AIC) are from these models 
[30]. All statistical analyses were performed in R v. 4.3.1 
[38], GAM regression was carried out with the “mgcv” 
library [29], while the mixed effect GAM (GAMM) was 
performed with the “GAMM4” library that estimates 
random effects using the “lme4” library [39]. All figures 
were also made with R.

5 � Conclusion
We demonstrate here that microbes with smaller 
genomes tend to be harder to compress than microbes 
with genome sizes approximately above 2 mb. 

Moreover, we found a clear and surprising positive 
association between OUV and compression rate sug-
gesting that increasing oligonucleotide usage variance 
is a proxy for genome redundancy in microbes. Since 
the OUV measure is related to Shannon entropy, there 
is a positive association between genome redundancy 
and information potential.

The MBGC method compressed microbial genomes 
to a higher rate than the ZPAQ algorithm, on average. 
Moreover, MBGC compressed AT poor genomes signif-
icantly better than the ZPAQ compressor. The MBGC 
algorithm’s ability to obtain a progressively higher com-
pression rate for genomes with decreasing AT content 
is likely because the method considered both oligonu-
cleotides and their reverse complements. These find-
ings suggest that organisms with AT poor/GC rich 
genomes have higher than expected occurrences of 
particular oligonucleotides and their respective reverse 
complements than AT rich genomes. Since compres-
sion is tightly linked to randomness, smaller, AT rich 
genomes with low OUV, often found to be host-associ-
ated, appear to have accumulated more random muta-
tions, on average, and thus exhibit lower information 
potential, than microbes with larger, AT poor/GC rich 
genomes and higher OUV frequently found in soil and 
the environment.
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