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Abstract 

Many subtypes of SARS-CoV-2 have emerged since its early stages, with mutations showing regional and racial dif-
ferences. These mutations significantly affected the infectivity and severity of the virus. This study aimed to predict 
the mutations that occur during the evolution of SARS-CoV-2 and identify the key characteristics for making these 
predictions. We collected and organized data on the lineage, date, clade, and mutations of SARS-CoV-2 from publicly 
available databases and processed them to predict the mutations. In addition, we utilized various artificial intelligence 
models to predict newly emerging mutations and created various training sets based on clade information. Using 
only mutation information resulted in low performance of the learning models, whereas incorporating clade differ-
entiation resulted in high performance in machine learning models, including XGBoost (accuracy: 0.999). However, 
mutations fixed in the receptor-binding motif (RBM) region of Omicron resulted in decreased predictive performance. 
Using these models, we predicted potential mutation positions for 24C, following the recently emerged 24A and 24B 
clades. We identified a mutation at position Q493 in the RBM region. Our study developed effective artificial intelli-
gence models and characteristics for predicting new mutations in continuously evolving infectious viruses.
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1 � Background
Coronavirus disease 2019 (COVID-19) has become 
prevalent worldwide since 2019. Although its infectivity 
has decreased recently, it still occurs frequently (https://​
ourwo​rldin​data.​org/). The World Health Organization 
(WHO) distinguishes pathological differences by lineage 
based on combinations of mutation types, categorizing 
SARS-CoV-2 into variants of concern (VOCs), variants 
of interest (VOIs), and variants being monitored (VBMs). 
Through its continuous evolution, severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) has continu-
ously produced mutations, resulting in 40 clades. These 
mutations are associated with disease severity and trans-
mission to humans [1, 2].

Mutations that have occurred during the evolution of 
SARS-CoV-2 have mainly been observed in the recep-
tor-binding domain (RBD) of the spike protein. These 
mutations facilitate immune evasion, bind to the host 
cell’s ACE2 receptor, and are key targets for vaccines 
and treatments, necessitating close monitoring [3–5].
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A substantial amount of epidemiological, genetic, and 
vaccine-related data has been accumulated for COVID-
19. Numerous studies have been conducted to utilize 
these data effectively for diagnosis, prevention, and 
treatment. Mathematical and statistical models have 
been used to quantify the virulence and transmissibility 
of SARS-CoV-2 and to predict the spread of the Omi-
cron variant [6, 7]. Artificial intelligence is also used 
to build literature-based learning models for diagno-
sis and prognosis related to SARS-CoV-2 or to utilize 
clinical markers and clinical information for severity 
prediction or diagnosis of COVID-19 [8–10]. However, 
many of these studies exhibit regional and racial biases 
in the data, which can lead to challenges in generaliza-
tion and increase the risk of overfitting. Furthermore, 
the frequent mutations in SARS-CoV-2 make it sub-
stantially more difficult to develop treatments or vac-
cines compared to previous infectious diseases, making 
it necessary to predict these mutations.

Obermeyer et  al. used machine learning to identify 
mutations occurring in different structures of SARS-
CoV-2 and predict new lineages [11]. Additionally, 
they employed a phylogenetic tree-based sampling 
method that integrated temporal and sequence infor-
mation to predict mutations [12]. Ultimately, accu-
rately predicting the exact mutations that branch from 
a phylogenetic tree is challenging. Studies on mutation 
prediction using deep learning have also declined (Sup-
plementary Fig. 1). Moreover, using mutation data from 
the early Omicron variant for training resulted in a 
lower accuracy in predicting recent mutations.

To enhance the accuracy of mutation prediction, it is 
crucial to carefully select the features used in the analy-
sis and the correlations between mutations. We aimed 
to provide precise mutation information by leveraging 
key data, including mutation details, time-series infor-
mation, and insights into the phylogenetic relationships 
between lineages for prediction (Supplementary Fig. 2).

2 � Methods
2.1 � Data collection
We utilized the spike glycoprotein (UniProt ID: 
P0DTC2, SPIKE_SARS2) from severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), as ref-
erenced in the UniProt database. Specifically, the 
amino acid sequence between the N-terminal region 
(NSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIS-
TEIYQAGSTPCN) and the C-terminal region (GVEG-
FNCYFPLQSYGFQPTNGVGYQPY) was used for our 
study.

2.2 � Preprocessing for learning
We retrieved metadata from Nextstrain’s nCoV open data 
page (https://​data.​nexts​train.​org/​files/​ncov/​open/​metad​
ata.​tsv.​zst). The data includes the host and collection date 
of virus samples, the collection region, the gender and 
age of the sample, lineage, and mutation information. 
We filtered and processed the data using the host, collec-
tion date, lineage, and mutation information to create the 
training data.

Before the learning process, we filtered and stand-
ardized the data as follows. We formatted the dates in 
the YYYY-MM-DD format. We specified the host as 
“human.” For the Pango lineage and Nextstrain clade, we 
removed Not a Number (NaN) and “?” values. For amino 
acid substitutions, we filtered and only used mutations 
found in the RBM (437–508) region. Through the filter-
ing process, we extracted 8,411,025 samples from a total 
of 8,586,162 samples (Fig. 1).

Secondly, we performed the following steps for data 
preprocessing. We converted the date information to the 
number of days elapsed since the initial collection date 
and then normalized it to a range of 0–1 using a min–
max scaler [13, 14]. We used the mutation information 
from the RBM region of the spike protein (P0DTC2) to 
create a 72-position mutation sequence. We connected 
the parent clade and corresponding subclades involved in 
the clade diversification to create datasets (data available 
at https://​github.​com/​Hongl​ab-​Resea​rch/​Covid-​mutat​
ion-​proba​bility).

2.3 � Data processing
We used various models for the learning process, includ-
ing machine learning models (LightGBM [15], XGBoost 
[16], and random forest [17]) and a deep learning model 
(gated recurrent unit) (Fig. 1) (https://​github.​com/​Hongl​
ab-​Resea​rch/​Covid-​mutat​ion-​proba​bility).

We performed the training set process as follows, 
considering the clade’s timeline, mutations, and clade 
branching points. In the mutation prediction process, we 
created training datasets from three perspectives, consid-
ering temporal information and the differentiation pro-
cess of SARS-CoV-2.

First, we conducted training using only mutation infor-
mation, without considering any additional information 
such as time and differentiation data. We used a random 
state to randomly generate the training set, validation set, 
and test set from the entire dataset.

Second, we created the training set and test set with 
temporal information. We investigated the outbreak 
periods (waves) of SARS-CoV-2 to generate the data-
sets: wave 1 (March 2020-June 2020), wave 2 (Septem-
ber 2020-January 2021), wave 3 with the Alpha variant 
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(January 2021-June 2021), wave 4 with the Delta vari-
ant (July 2021-October 2021), and wave 5 with the onset 
of the Omicron variant (from November 2021). Based 
on these periods, we organized three datasets. The first 
training set used wave 1 as the training set and wave 2 
as the test set, training to predict wave 3. The second 
training set used wave 1 and wave 2 as the training set 
and wave 3 as the test set, training to predict wave 4. The 
third training set used wave 1 as the training set and wave 
2 as the test set, training to predict wave 4.

Third, we created training datasets based on the 
clade differentiation process. The first training set uti-
lized clades prior to 21  M (Omicron B.1.1.529), includ-
ing 19A, 19B, 20A, 20B, 20C, 20D, 20E (B.1.177), 20F 

(D.2), 20G, 20H, 20I, 20  J, 21A (Delta, B.1.617.2), 21B 
(Kappa, B.1.617.1), 21C (Epsilon, B.1.427, B.1.429), 21D 
(Eta, B.1.525), 21E (Theta P.3), 21F (Iota, B.1.526), 21G 
(Lambda, C.37), 21H (Mu, B.1.621), 21I (Delta), and 
21  J (delta). The validation set was trained using clades 
after 21 M (Omicron B.1.1.529). The second training set 
was created by adding clades 21 K (Omicron BA.1) and 
21L (Omicron BA.2) to the first training set data. The 
validation set was trained using clades 22A (Omicron 
BA.4), 22B (Omicron BA.5), 22C (Omicron BA.2.12.1), 
22D (Omicron BA.2.75), 22E (Omicron BQ.1), 22F 
(Omicron XBB), 23A (Omicron XBB.1.15), 23B (Omi-
cron XBB.1.16), 23C (Omicron CH.1.1), 23D (Omicron 
XBB.1.9), 23E (Omicron XBB.2.3), 23F (Omicron EG.5.1), 

Fig. 1  Flowchart for accurate prediction of the next mutation in the evolution of infectious diseases (COVID-19)
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23G (Omicron XBB.1.5.70), 23H (Omicron HK.3), and 
23I (Omicron BA.2.86). The third training set was created 
by adding clades 22A (Omicron BA.4), 22B (Omicron 
BA.5), 22C (Omicron BA.2.12.1), and 22D (Omicron 
BA.2.75) to the second training set data. The validation 
set was trained using clades 22E (Omicron BQ.1), 22F 
(Omicron XBB), 23A (Omicron XBB.1.15), 23B (Omi-
cron XBB.1.16), 23C (Omicron CH.1.1), 23D (Omicron 
XBB.1.9), 23E (Omicron XBB.2.3), 23F (Omicron EG.5.1), 
23G (Omicron XBB.1.5.70), 23H (Omicron HK.3), and 
23I (Omicron BA.2.86). The fourth training set was cre-
ated by adding clades 22E (Omicron BQ.1), 22F (Omi-
cron XBB), 23A (Omicron XBB.1.15), and 23B (Omicron 
XBB.1.16) to the third training set data. The validation 
set was trained using clades 23C (Omicron CH.1.1), 23D 
(Omicron XBB.1.9), 23E (Omicron XBB.2.3), 23F (Omi-
cron EG.5.1), 23G (Omicron XBB.1.5.70), 23H (Omicron 
HK.3), and 23I (Omicron BA.2.86). Fifth, we used early 
Omicron variants 21  M, 21  K, and 21L for the training 
dataset and then used subsequent variants 22A, 22B, 
22C, and 22D for the validation dataset. Sixth, we used 
21 M, 21 K, 21L, 22A, 22B, 22C, and 22D as the training 
dataset and 22E, 22F, 23A, and 23B as the test dataset for 
training (Fig. 2A, Supplementary Table 2) (https://​github.​
com/​Hongl​ab-​Resea​rch/​Covid-​mutat​ion-​proba​bility).

2.4 � Data analysis
The criteria for predicting the next mutation through the 
learning model were defined based on the lineage pipe-
line rules from Pangolin. A lineage-defining mutation is 
considered to occur when it appears in the first 80% of 
records for that lineage as logged by Pangolin. This study 
also defines new mutations according to this criterion 
(https://​cov-​linea​ges.​org/​resou​rces/​pango​lin.​html and 
https://​ncbii​nsigh​ts.​ncbi.​nlm.​nih.​gov/​2024/​05/​02/​autom​
ated-​linea​ge-​defin​itions-​ncbi-​virus-​sars-​cov-2-​varia​nts-​
overv​iew/). Each model receives information about the 
presence or absence of mutations at position 72 in the 
RBM region as input. The model then predicts and out-
puts positions where future mutations are likely to occur. 
The performance of the model is evaluated by comparing 
predicted mutation positions with the actual mutation 
positions in samples from the evolution of SARS-CoV-2. 
Therefore, based on this criterion, mutation predictions 
were performed using the learning model. To evaluate 
efficiency, accuracy, precision, recall, and F-score were 
utilized [18].

3 � Results
3.1 � Data investigation for SARS‑CoV‑2 mutation prediction
We investigated the clades and lineages of SARS-CoV-2 
from its outbreak to the present, organizing the data 
necessary for training based on the mutation frequency 

[19]. We focused on the RBM of the spike protein, which 
showed the highest mutation frequency (Supplementary 
Fig. 3).

The datasets required for training were structured 
as training sets that included the entirety of the SARS-
CoV-2 clades (training sets 1, 2, 3, and 4) and training 
sets constructed using omicron clades with the high-
est number of mutations (training sets 5 and 6). Finally, 
datasets were created using a random state method for all 
the clades that emerged (Fig. 3A). In the training sets, the 
mutation occurrence positions were weighted towards 
specific locations within each set, showing a high fre-
quency only at those positions. Therefore, refined data 
suitable for training were required (Fig. 2B).

3.2 � Data construction for accurate predictions 
of SARS‑CoV‑2 mutations

Using clades from 2019 to May 2023, we aimed to pre-
dict SARS-CoV-2 mutations using machine learning 
(random forest, XGBoost, and LightGBM) and deep 
learning (GRU) models. Randomly extracted clades were 
used to predict potential mutations. The results showed 
low accuracy in both machine learning models (random 
forest, XGBoost, and LightGBM) and the deep learning 
model (GRU) (Fig.  3A). For accurate mutation predic-
tion, the time and region were considered in addition to 
the mutation information. We generated datasets and 
performed modeling based on the timing of pandemic 
waves, their prevalence periods, and mutation informa-
tion. From the data collected in Nextstrain, time infor-
mation refers to the collection date rather than the initial 
report date. In addition, we confirmed that most of the 
sequence collection and location data were from North 
America and Europe (Supplementary Fig. 4).

Wave 1 and wave 2 featured the wild type, whereas an 
Alpha variant with N501Y characterized wave 3. Wave 
4 was dominated by the delta variant with L452R and 
T478K, whereas wave 5 saw the emergence of the Omi-
cron variant. To verify the causal relationships between 
mutations, we used pandemic wave data to predict sub-
sequent mutations (Fig.  3B). We constructed three pre-
diction models for the analysis: model ① predicting wave 
3 using waves 1 and 2; model ② predicting wave 4 using 
waves 1, 2, and 3; and model ③ predicting wave 4 using 
waves 1 and 2. The wave 3 prediction model ① showed 
an accuracy of approximately 0.32 using XGBoost. The 
wave 4 prediction model ② showed an accuracy of 
approximately 0.168 using XGBoost. Finally, the wave 4 
prediction model showed an accuracy of approximately 
0.022 using XGBoost (Fig. 3B).

In waves 1 and 2, approximately 40% of the mutation 
information required for training included the mutation 
AA 501 in the Alpha variant in wave 3. In contrast, the 
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Fig. 2  Phylogenetic tree based on clades, mutation information, and model training data composition. A Nextstrain data collected from December 
23, 2019, to February 27, 2024, is visualized by clade, WHO-designated name, and Pango nomenclature lineage. Mutation information found 
with high frequency (80%) at 72 positions within the receptor binding motif (RBM) of the spike protein is also displayed. Training sets and validation 
sets are constructed for each clade, forming six stages of training sets. B For the training set and validation set, the mutation rates at each RBM 
position are displayed
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mutations at positions 452 and 478 of the delta variant in 
wave 4 had a frequency of approximately 16.7%, making 
accurate mutation prediction challenging (Fig. 3C).

For the Omicron variant in wave 5, mutations were 
found at various locations, making it difficult to make 
predictions using only information from waves 1, 2, 3, 
and 4 (Fig. 3B). Additionally, for recent clades 23I, 23H, 

Fig. 3  Data composition for accurate mutation prediction in the RBM region of SARS-CoV-2. A Model performance when trained with a dataset 
created using random state from clades collected from December 23, 2019, to May 22, 2023. B Pre-training of accurate mutations using 
the pandemic wave periods, mutations found in the RBM, and the regional information of the collected samples. Models trained to predict wave 3 
from wild-type waves 1 and 2; wave 4 from wild-type waves 1, 2, and 3; and wave 4 (delta) from wild-type waves 1 and 2. C Frequency of mutation 
locations that may occur in the next wave predicted by the XGBoost model (waves 1, 2 −  > wave 3: ①, waves 1, 2, 3 −  > wave 4: ②, waves 1, 
2 −  > wave 4: ③). D For current Omicron variants including wave 5, mutations in specific RBM regions become fixed. Red indicates higher frequency 
of mutations at that position, while white indicates lower frequency (23H: n = 5830, 23I: n = 7452, 24A: n = 86,318, 24B: n = 9922)
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24A, and 24 B, the mutation rates in the RBM were fixed 
at specific locations, presenting challenges for predicting 
new mutation sites (Fig. 3D).

3.3 � Prediction of new SARS‑CoV‑2 mutations
We created training data with mutation, collection time, 
and clade information and trained each model accord-
ingly using XGBoost. Earlier training sets had low 
accuracy (training set 1, accuracy: 0.765; training set 2, 
accuracy: 0.639; training set 3, accuracy: 0.605; training 
set 4, accuracy: 0.593). In contrast, training sets com-
posed solely of Omicron data showed very high accuracy, 
with training sets 5 and 6 achieving an accuracy of 0.999 
(Fig. 4A). Random forest and LightGBM showed similar 
results to XGBoost, whereas GRU showed a lower per-
formance (Supplementary Fig.  5 and Supplementary 
Table 5).

Using information from recently reported clades 23H, 
23I, 24A, and 24 B, we investigated mutations that could 
occur in the RBM region. Using information from the 
recently reported lineages 24A and 24B, we predicted 
potential mutations in the RBM region. Mutations likely 

occurred at positions 441, 444, 453, 475, 493, and 500. 
Mutations at position 493 were also observed in the 23C 
lineage (Fig. 4B).

The inclusion of the period in which numerous muta-
tions occurred in Omicron, and the temporal and differ-
entiation periods, led to improved mutation prediction 
performance. Compared to machine learning models 
such as XGBoost, LightGBM, and random forest, the 
GRU model showed a relatively lower performance.

3.4 � Configuration of a new mutation prediction algorithm 
in SARS‑CoV‑2 infectivity prediction

We incorporated an algorithm for predicting new SARS-
CoV-2 mutations into our preexisting infectivity predic-
tion system (Artificial Intelligence Analytics Toolkit for 
predicting viral mutations in protEin: AIVE). To run this 
algorithm within the system, we set up a server equipped 
with 96 CPU cores, 256-GB RAM, and 3 RTX 8000 
GPUs.

To use the mutation prediction feature, users can 
access the mutation prediction page and input the RBM 
sequence they wish to analyze. This process involves 

Fig. 4  Prediction of future mutations by each learning model after constructing optimal training data for learning. A The performance 
of the models trained using the XGBoost method was evaluated, and the highest accuracy was observed in the models trained on datasets 
from just after the Omicron variant (wave 5), specifically training set 5 and training set 6. Training set 5 (accuracy: 0.999957, precision: 0.999995, 
recall: 0.999995, F1 score: 0.999995), training set 6 (accuracy: 0.999977, precision: 0.999998, recall: 0.999997, F1 score: 0.999997). B The mutation 
occurrence positions of 24C (KP.3), which was not collected by Nextstrain (no sequencing information of SARS-CoV-2), were predicted and analyzed 
through the clade data of 24A and 24B, which recently emerged and were not used in the training process of the existing models. Through this 
analysis, the mutation positions in the RBM region that may appear in 23C were identified, and amino acid substitutions were confirmed. Positions 
441, 444, 453, 475, 493, and 500 were predicted as positions for potential new mutations, and 24C (KP.3) was confirmed as a mutation that occurred 
at the position marked by the blue box (493). The new predicted mutations were predicted with very low frequencies, with position 441 having 
the highest value of 0.00055 and position 493, which actually occurred, showing a probability of 0.00024. For amino acid substitutions, L441F 
and Q493E are likely to occur at the respective locations with Q493E actually occurring. However, considering that the amino acid substitution 
Q493R had previously occurred, it is possible that it may temporarily appear and then disappear again due to its low predicted rate



Page 8 of 11Choi et al. Genomics & Informatics           (2024) 22:15 

using the sequence of the RBM region of the spike pro-
tein (P0DTC2) as a reference, with users being able to 
modify the sequence to generate mutation sequences. 
Once the desired sequence was generated, the user sub-
mitted a task and sent it to the server. The server receives 
the request, checks the available resources, and allo-
cates them accordingly. The sequence is encoded using 
the CPU, and then predictions of the mutation posi-
tions are performed using pregenerated learning mod-
els on the GPU. Upon task completion, the server sent 
the results back to the user, providing information on 
the positions of the mutation predictions and model 
performance (Fig. 5).

4 � Discussion
Previous infectious diseases either surged briefly, dis-
appeared, or were primarily limited to specific regions 
[20–22]. Despite the implementation of stringent legal 
restrictions and limitations on interregional travel to 
curb the initial spread of COVID-19, more potent line-
ages have emerged over time [23–26].

SARS-CoV-2 has given rise to numerous lineages and 
clades, each distinguished by mutations that significantly 
accumulate as these lineages continue to evolve [27, 28]. 
Even in infectious diseases such as severe acute respira-
tory syndrome-associated coronavirus (SARS) and Mid-
dle East respiratory syndrome coronavirus (MERS), 
mutations occur during the epidemic period. However, 
these infectious diseases do not cause many mutations 

Fig. 5  AIVE prediction module



Page 9 of 11Choi et al. Genomics & Informatics           (2024) 22:15 	

because of their relatively short durations or regional 
limitations [29–31].

The numerous mutations that occurred in SARS-CoV-2 
resulted in the initially designed COVID-19 vaccines 
sometimes being ineffective against the Omicron lineage 
[32, 33]. Additionally, there have been reports of some 
treatments being ineffective despite the development of 
appropriate therapeutics owing to mutations [34–36]. 
Therefore, it is crucial to quickly and accurately predict 
mutations that occur during the evolution of infectious 
diseases.

Recently, research using artificial intelligence meth-
ods to analyze genomes has become increasingly promi-
nent. Numerous studies have focused on predicting 
and preventing SARS-CoV-2 infection using genomic 
information.

Bhowmick et  al. proposed two new mutations (P499S 
and T500R) based on a protein three-dimensional struc-
ture prediction algorithm. They estimated binding affin-
ity through the interaction between the receptor-binding 
domain (RBD) and host cell receptor ACE2 [37]. How-
ever, these mutations were inferred based on the original 
Wuhan-Hu-1 sequence, using physicochemical binding 
interactions. Therefore, they did not predict the muta-
tions included in the current major lineages or consider 
clade differentiation and temporal elements of clades and 
lineages.

Saldivar-Espinoza et al. used machine learning to pre-
dict that mutations occurring multiple times indepen-
dently throughout the evolution of the virus are more 
likely to result from host deaminase activity than from 
replication errors [38]. They also predicted the occur-
rence of mutations based on the SARS-CoV-2 structure. 
They calculated the values based on whether the changes 
and mutations in nucleotides belonged to a lineage-asso-
ciated clade.

In these predictions, the pattern of amino acid substi-
tutions in SARS-CoV-2 was missed because of results at 
the nucleotide level. They failed to predict new mutations 
in the spike protein, which has the most mutations that 
bind to host ACE2.

Moreover, in the early lineages and clades, a small 
number of mutations occurred in the RBM region. When 
examining clades 19A-21E that predate Omicron, the 
major amino acid substitution sites were L452, S477, 
T478, E484(K), F490, and N501. The number of muta-
tions was also limited to one or two, making accurate 
predictions challenging.

The temporary emergence and disappearance of muta-
tions have made it more challenging to determine the 
correlation between mutations, except for those at major 
substitution sites. This limitation affects the accuracy of 
predicting the location of the mutation. Analysis of the 

12 clades that emerged by 2020 revealed that 8 clades 
other than 20F, 20H, 20I, and 20 J did not have mutation 
sides with a frequency above 0.8. The highest frequency 
of the mutation sites did not exceed 0.3. Only five muta-
tion sites had a frequency greater than 0.1, which made 
it challenging to identify the characteristics of certain 
mutations.

On the other hand, after the Omicron variant, specifi-
cally clade 21  M, in addition to the existing amino acid 
substitution sites, mutations occurred at various posi-
tions such as N440, V445, G446, F456, N460, E484(A), 
F486, F490, Q493, Q498, N501, and Y505. Because of 
these diverse mutations and the availability of numerous 
samples, the predictions were more accurate (Fig. 2). In 
the case of recent Omicron variants, the prediction accu-
racy of mutations decreased because of the increased 
similarity of mutations (Fig. 4).

In the predicted 24C clade, the Q493E mutation 
occurred at position 493, where the mutation had previ-
ously occurred and then disappeared. Given the mutation 
frequency data up to clade 23B clade, the likelihood of 
mutations occurring at position 493 gradually decreased. 
Considering that the predicted frequency was not high, 
the Q493E mutation was considered a transient mutation 
that may disappear again (Supplementary Fig. 6).

As the frequency of mutations becomes increasingly 
fixed at specific positions, future mutations are likely to 
occur either as temporary additional mutations at fixed 
locations or as changes in the type of amino acid in the 
existing mutations. Over time, the mutation process 
results in only transient or minor changes.

During the initial stages of the pandemic, mutations 
sporadically appeared and then disappeared, making 
it difficult to identify correlations between mutations. 
However, in recent samples, the difficulty in distin-
guishing between mutations arose from the increased 
similarity between samples. This difficulty can lead to 
overfitting in the prediction models and reduce the 
accuracy of the predictions.

Our study had several limitations. First, our study 
focused on the RBM region of the spike protein, where 
many significant mutations were found. Our study 
could not fully assess mutation probabilities in other 
regions. Second, the data used in our study correspond 
to the time of genome sequencing rather than the ini-
tial occurrence of the mutation, indicating that the 
date information was not entirely reflective of evolu-
tionary continuity. Third, the limited mutation infor-
mation available before Omicron makes it difficult to 
predict the mutations that occur in Omicron.
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5 � Conclusions
Our study proposes an accurate method for predicting 
mutations in infectious diseases using mutation infor-
mation and time data based on artificial intelligence. 
This approach aims to enhance the precision of the 
predictions.
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