
Thalhath Genomics & Informatics (2024) 22:17
https://doi.org/10.1186/s44342-024-00021-4

BRIEF REPORT

Lightweight technology stacks for assistive
linked annotations
Nishad Thalhath1*

Abstract

This report presents the findings of a project from the 8th Biomedical Linked Annotation Hackathon (BLAH) to explore
lightweight technology stacks to enhance assistive linked annotations. Using modern JavaScript frameworks
and edge functions, in-browser Named Entity Recognition (NER), serverless embedding and vector search within web
interfaces, and efficient serverless full-text search were implemented. Through this experimental approach, a proof
of concept to demonstrate the feasibility and performance of these technologies was demonstrated. The results show
that lightweight stacks can significantly improve the efficiency and cost-effectiveness of annotation tools and pro-
vide a local-first, privacy-oriented, and secure alternative to traditional server-based solutions in various use cases.
This work emphasizes the potential of developing annotation interfaces that are more responsive, scalable, and user-
friendly, which would benefit bioinformatics researchers, practitioners, and software developers.

Keywords Lightweight stacks, JavaScript, Assistive linked annotations, NER, Serverless search, Vector search, Semantic
search

1 Introduction
Linked annotations are a vital element in biomedical data
curation. Various tools and options exist to achieve bet-
ter annotation and curation. The assistive options to help
the curators pick proper entities and relations are very
important. Many modern annotation tools are based on
web technologies [1], and traditionally, there are various
server-based solutions to assist in searching, selecting,
and autosuggesting interactions in user interfaces. These
assistive interactions help the curators and data providers
ensure the quality of the annotations and ease the anno-
tation process.

The development of advanced browser engines and
browser-oriented lightweight technology stacks have

revolutionized the development of web applications,
enabling the creation of highly functional interfaces with
minimal reliance on server-side processing for some spe-
cific use cases. This evolution is particularly relevant in
implementing assistive linked annotations for data entry-
and edit-interfaces with a notion that an efficient and
responsive UI/UX is essential for better annotation sup-
port for the curators and data providers.

Since the introduction of ES6, the ECMAScript/JavaS-
cript ecosystem has become increasingly powerful and
efficient. This has also prompted the creation of modern
type-safe languages like TypeScript and the develop-
ment of various web frameworks. These advancements
and widespread adoption have paved the way for mod-
ern JavaScript runtimes such as Node.js, Deno, Bun,
LRT, and WinterJS. Platforms like Cloudflare Workers
and Deno Deploy have enabled the efficient execution of
serverless functions, making JavaScript and WebAssem-
bly-based solutions more appealing for a wide range of
applications.

From a developer’s perspective, these improvements
have enhanced developer experience (DX) and facilitated

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Genomics & Informatics

*Correspondence:
Nishad Thalhath
nishad.thalhath@riken.jp
1 Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center
for Integrative Medical Sciences, Tsurumi, Yokohama 230-0045, Kanagawa,
Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44342-024-00021-4&domain=pdf

Page 2 of 7Thalhath Genomics & Informatics (2024) 22:17

the creation and deployment of applications and API
services using lightweight technology stacks, includ-
ing JavaScript and WebAssembly. The growing popular-
ity of edge computing and serverless functions has led
to continual performance and cost-efficiency improve-
ments. Consequently, building more powerful and cost-
effective biomedical annotation and visualization tools
and services is now possible [2]. As full-stack solutions,
these lightweight technology stacks offer high portabil-
ity across web interfaces, servers, serverless functions,
edge computing platforms, and even desktop and mobile
applications.

This report documents the process and outcomes of
a hackathon project designed to test and explore these
concepts by creating a proof-of-concept implementation.

1.1 Objective and rationale
The primary objective of this project is to explore the
feasibility of using lightweight technology stacks ori-
ented toward web browsers and browser engines, such as
JavaScript and WebAssembly (WASM) implementations,
to enhance assistive linked annotations. Specifically,
implementing in-browser Named Entity Recognition
(NER), serverless embedding and vector search within
web interfaces, and efficient serverless full-text search. By
leveraging edge functions and modern JavaScript frame-
works, this hacking project aimed to provide a proof of
concept demonstrating these technologies’ usability and
potential benefits.

Lightweight technology stacks present several com-
pelling use cases in the context of assistive linked
annotations, particularly within the medical and clini-
cal fields where privacy, security, and real-time per-
formance are critical. One significant application is
Medical Record Annotation in Restricted Environ-
ments. Due to privacy and security concerns, network
access is limited or highly regulated in many medical
settings. However, the need to annotate and structure
patient information, such as extracting symptoms from
clinical records using the Human Phenotype Ontology
(HPO), remains essential. Traditional annotation tools
that rely on server communication are unsuitable in
such environments. Lightweight, client-side technol-
ogy stacks enable these tools to function entirely on
the client side, providing a local-first, privacy-oriented
solution that adheres to stringent data protection reg-
ulations, ensuring that sensitive information remains
secure. In clinical research, researchers often operate
in environments without reliable internet access, such
as field hospitals or rural clinics. Client-side annota-
tion tools, built with lightweight technology stacks,
allow these researchers to continue their work without

interruption. Once network access is available, data can
be synchronized with central systems, enabling seam-
less integration into larger research workflows.

Real-time Patient Data Annotation is another critical
use case. Healthcare professionals can leverage light-
weight annotation tools to tag quickly and structure data
during patient consultations. This ensures that medical
records are updated accurately and promptly, without
the delays caused by network latency, which is particu-
larly important in time-sensitive clinical environments.
Additionally, lightweight technology stacks offer sig-
nificant advantages in scenarios where Privacy-Sensitive
Data Annotation is required, such as annotating genetic
data or sensitive medical histories. By processing data
entirely on the client side, these tools eliminate the need
for information to leave the local environment, signifi-
cantly reducing the risk of data breaches and ensuring
compliance with privacy regulations. It improves privacy
and security by eliminating the need for server-side data
processing and storage.

Beyond these specific use cases, lightweight annota-
tion stacks offer general benefits for enhancing annota-
tion interfaces. They can provide quick suggestions to
annotators, speeding up the annotation process and
avoiding significant delays associated with server com-
munication. By leveraging client-side processing, we can
significantly reduce latency—the time delay between the
cause and its observed effect—thereby providing a more
responsive and user-friendly interface [3]. By offloading
many of these tasks to the client side, these tools achieve
faster performance than traditional client-server archi-
tectures, dramatically reducing latency and improving
the overall user experience. Also, client-side process-
ing enhances cost efficiency by reducing the reliance on
server resources, making the system more economical.

1.2 Use cases
A few use cases where lightweight technology stacks can
be used to enhance assistive linked annotations are:

• Develop tools that run entirely on the client side,
eliminating the need for server-side processing and
allowing users to annotate data without a network
connection.

• Implement API services that leverage edge comput-
ing to process requests closer to the user, reducing
latency and improving response times.

• Create responsive and user-friendly UI components
for annotation tools, enhancing the user experience.

• Design tools prioritizing privacy and security by
avoiding server-side processing and data storage,
ensuring that all data remains on the client side.

Page 3 of 7Thalhath Genomics & Informatics (2024) 22:17

• Develop tools that provide real-time assistive hints
to annotators, using client-side processing to ensure
immediate feedback.

• Build portable and efficient tools, capable of running
on various run-times and platforms, ensuring broad
compatibility and ease of deployment.

• Create standalone desktop and mobile applications
using frameworks such as Tauri, Electron, and React
Native, offering robust and versatile annotation solu-
tions across different devices.

• Use client-sided vector search to generate retrieval-
augmented generation (RAG) based LLM prompts
to enhance the interfaces and annotation workflows
further [4].

2 Methods
A proof-of-concept web application was developed to
demonstrate the feasibility and performance of light-
weight technology stacks for assistive linked annota-
tions. The demonstration provides the Cell Ontology [5],
an ontology from the OBO Foundry that encompasses
the domain of biological cell types and primarily focuses
on animal cell types, and the Human Phenotype Ontol-
ogy (HPO), which is widely used in clinical and research
settings to represent and categorize human phenotypic
abnormalities [6]. The HPO provides a standardized
vocabulary for describing phenotypic traits associated
with human diseases, facilitating the diagnosis, research,
and annotation of genetic and clinical data.

The web application was developed using SvelteKit1,
a modern JavaScript web framework based on Svelte.
The proof of concept (PoC) is composed and themed
with Flowbite components for Svelte2. WinkJS was uti-
lized to implement the NLP and NER functionalities.
WinkJS3 is an open-source package suite for natural
language processing, statistical analysis, and machine
learning in Node.js. This PoC uses the wink-eng-
lite-web-model, wink-ner, wink-nlp, and
wink-tokenizer packages from the WinkJS project.

To generate the embedding vectors for the entities in
the Cell Ontology, the GTE-Small model was used. The
GTE-Small model is a lightweight version of the GTE
model, a general-purpose text embedding model trained
with multi-stage contrastive learning [7]. To implement it
in the proof-of-concept web application, Supabase’s fork
of the GTE-Small model with ONNX weights was used
to be compatible with Transformers.js4. The model was
loaded and executed in the browser using Transformers.

js. Transformers.js5 is designed to be functionally equiv-
alent to Hugging Face’s Transformers Python library,
enabling the execution of pre-trained models through a
similar API. By leveraging ONNX Runtime6, Transform-
ers.js allows these models to run directly in the browser.

For the full-text search and vector search function-
alities, the PoC web application uses the Orama search
library7. Orama search is a full-text, vector, and hybrid
search engine that runs in the browser, on servers, and
at edge platforms. Orama search was selected for its sup-
port for both full-text and vector search, allowing a single
library to demonstrate both search functionalities. The
Orama search library is used to index the ontology enti-
ties and their embeddings using the GTE-Small model.
The search index is served as static files and loaded in the
browser on demand.

A schematic overview of the PoC web application is
shown in Fig. 1. The web application consists of three
main components: the NER component, the embedding
component, and the search component. The NER com-
ponent is responsible for recognizing named entities in
the text. The embedding component generates embed-
ding for the search query using the GTE-Small model.
The search component allows the user to search for enti-
ties based on their text or embedding vectors.

3 Results
A fully functional proof-of-concept (PoC) web applica-
tion was developed to demonstrate the feasibility of using
lightweight technology stacks for assistive linked anno-
tations. To provide concrete evidence that such applica-
tions can be deployed as client-side-only applications, the
PoC web application was deployed as a static website on
GitHub Pages. This deployment is accomplished using
GitHub Actions and the SvelteKit adapter for static sites.
The web application can be accessed at https:// nishad.
github. io/ lanno tate/, and the source code is available at
https:// github. com/ nishad/ lanno tate.

The PoC web application was tested across common
web browsers and devices to ensure responsiveness and
efficiency. The application consistently performed well
in all tested environments, demonstrating robustness
and low latency response. The resulting PoC successfully
showcases the feasibility of implementing in-browser
Named Entity Recognition (NER), serverless embed-
ding and vector search, and efficient serverless full-text
search. Additionally, the NER component of the PoC
web application can generate PubAnnotation [8] TextAE

1 https:// kit. svelte. dev
2 https:// flowb ite- svelte. com
3 https:// winkjs. org
4 https:// huggi ngface. co/ Supab ase/ gte- small

5 https:// huggi ngface. co/ docs/ trans forme rs. js/ en/ index
6 https:// onnxr untime. ai/
7 https:// askor ama. ai

https://nishad.github.io/lannotate/
https://nishad.github.io/lannotate/
https://github.com/nishad/lannotate
https://kit.svelte.dev
https://flowbite-svelte.com
https://winkjs.org
https://huggingface.co/Supabase/gte-small
https://huggingface.co/docs/transformers.js/en/index
https://onnxruntime.ai/
https://askorama.ai

Page 4 of 7Thalhath Genomics & Informatics (2024) 22:17

annotation JSON8. The Named Entity Recognition (NER)
component identifies and highlights key terms like "cell
type" or "symptom" within medical records, providing
immediate context and support for the annotator. The
Full-text Search functionality allows users to retrieve all
records containing specific terms. For example, searching
for "lymph" might return related concepts like "lympho-
cyte," "intraepithelial lymphocyte," or "blood lympho-
cyte." The Vector Search enables semantic querying,
which is particularly useful in medical contexts with dif-
ferent terms or synonyms. For example, searching for
"liver" might return related concepts like "hepatocyte"
or "hepatic cell," even if the exact term is not present in
the records, demonstrating the tool’s capability to han-
dle complex, domain-specific queries. Figure 2 shows
a screenshot of the PoC web application performing a
semantic search using the vector search option.

4 Discussions and conclusions
Although the PoC web application demonstrates the fea-
sibility of using lightweight technology stacks for assis-
tive linked annotations, it is not a complete solution for
such tools. The PoC serves as an initial step, showcasing
the potential of these technologies. However, for each
specific use case, there must be dedicated implementa-
tion and optimization of lightweight technology stacks
to achieve the required performance and efficiency. For
large-scale and complex annotation tasks, lightweight
technology stacks alone may not be sufficient. In these
cases, a hybrid solution incorporating both server-side
and client-side processing can be utilized to enhance
performance and scalability. The embedding and search
functionalities may also need more efficient and opti-
mized implementations for larger and multiple ontolo-
gies. Proper evaluation and benchmarking of the selected

libraries and implementation strategies should be con-
ducted for real-world applications.

The embedding model used in the PoC is a general-
purpose text embedding model. For specific domains
and ontologies, such as those in bioinformatics, domain-
specific embedding models may be necessary to achieve
better search results. Utilizing models tailored to the
specific vocabulary and context of the domain can signifi-
cantly improve the accuracy and relevance of the seman-
tic search results. The PoC selectively utilized specific
libraries and tools for demonstration purposes. How-
ever, many other libraries and tools can achieve similar
functionalities. For example, NLP.js9 is another library
that can be used for NLP and NER functionalities in the
browser. The choice of libraries and tools should be based
on the application’s specific requirements and use cases.

One significant challenge with client-side annotation
assistive technologies is ensuring that ontologies and
controlled vocabularies used for annotation remain up-
to-date. In a client-server model, updates to ontologies
and terms can be centrally managed on the server, sim-
plifying the process. However, in a client-side setup, each
instance of the software must ensure its locally available
ontologies are current, which can be more complex to
manage across multiple devices. Additionally, after anno-
tations are made, securely synchronizing this data with
centralized databases or other systems introduces fur-
ther challenges. Robust data synchronization and con-
flict resolution mechanisms are essential, particularly in
environments where patient safety and data integrity are
critical. While client-side processing offers advantages
such as privacy and local data control, it can also lead to
performance issues, especially when large ontologies or
datasets must be loaded into the browser. For instance,
the initial loading of extensive search indexes required

9 https:// github. com/ axa- group/ nlp. js

Fig. 1 Schematic overview of the proof-of-concept (PoC) web application

8 https:// textae. puban notat ion. org

https://github.com/axa-group/nlp.js
https://textae.pubannotation.org

Page 5 of 7Thalhath Genomics & Informatics (2024) 22:17

for full-text or vector search could cause significant
bandwidth consumption and slow performance in web
applications. These issues highlight the need for fur-
ther optimization and hybrid approaches that combine
local processing with selective server-side support. Such
approaches mitigate the trade-offs and ensure that offline
and online scenarios are effectively supported.

While the advantages of utilizing lightweight technol-
ogy stacks for client-side processing are evident, there
are inherent challenges associated with offloading a sig-
nificant portion of resources to clients. One of the pri-
mary concerns is the potential for excessive memory and
resource usage on client devices, which can lead to per-
formance degradation or even system instability, particu-
larly in resource-constrained environments.

During the testing of the proof-of-concept (PoC)
implementation, it was observed that the heap mem-
ory usage remained relatively low, generally below 50
MB. For smaller ontologies, such as Cell Ontology, the
memory footprint was even smaller, typically under 25
MB. This demonstrates the efficiency of the PoC under
typical conditions, especially when handling lightweight
or moderately sized ontologies. However, there was a
noticeable increase in memory usage during interactions

with the interface, mainly when performing full-text and
vector searches. For instance, while executing vector
searches, there was a slight uptick in memory and CPU
usage. Although this increase was minimal and did not
negatively impact performance in the tested scenarios, it
raises concerns about scalability. The resource demands
could escalate substantially if the system were required to
load and process significantly larger ontologies or mul-
tiple ontologies simultaneously. In such scenarios, each
loaded index could contribute to considerable mem-
ory usage, potentially overwhelming the client system.
This issue becomes especially critical when considering
deploying this technology in environments where high
performance and reliability are non-negotiable, such as
medical settings. The risk of client-side systems hanging
or crashing due to insufficient memory or excessive CPU
load must be mitigated through careful engineering and
optimization strategies.

Further enhancements are required to address these
potential issues. Optimizations could include more effi-
cient memory management, lazy loading of ontologies,
and the use of hybrid approaches that offload some of
the more intensive processing tasks back to the server.
Such measures would ensure that the system remains

Fig. 2 A screenshot of the PoC web application performing a semantic search using the vector search option

Page 6 of 7Thalhath Genomics & Informatics (2024) 22:17

responsive and reliable, even as the complexity and scale
of the ontologies increase.

One feasible solution is to create ontology subsets
based on specific profiles to address the challenges asso-
ciated with loading and processing large ontologies on
the client side. These subsets can be tailored for par-
ticular annotation purposes, such as in clinical settings
where only a relevant portion of a large ontology, like
the Human Phenotype Ontology (HPO), is required. By
focusing on a specific use case or clinical scenario, the
ontology can be subsetted to include only the most rel-
evant terms, significantly reducing the memory footprint
and processing requirements on the client. These subsets
can be loaded to the client on demand, automatically, or
through manual interaction, where the annotator selects
the appropriate profile to load. This approach minimizes
the bandwidth required for initially loading the indexes
and mitigates the performance impact associated with
processing extremely large ontologies. It allows the sys-
tem to remain responsive and efficient, even when deal-
ing with complex and data-intensive tasks.

Another futuristic approach for managing large
ontologies on the client side is using Small Language
Models (SLM) or Tiny Large Language Models (LLM).
These models can potentially automate the loading of
additional ontology subsets or related terms as needed,
providing a more dynamic and adaptive annotation
environment. However, this approach requires further
exploration, particularly as APIs for interacting with
embedded LLM in modern browsers still need to be
finalized10. Although these technologies are advancing
rapidly, practical implementation and testing are not yet
fully accessible, which presents a challenge for immedi-
ate deployment.

Upcoming specifications and standards like WebGPU
and WebNN promise to provide more efficient and opti-
mized solutions for client-side processing of NLP and
NER functionalities. These advancements could further
enhance the performance of lightweight technology
stacks in handling complex tasks directly in the browser.
In the future, more sophisticated and optimized light-
weight Large Language Models (LLMs) and Small Lan-
guage Models will likely become available for client-side
execution. These models could significantly improve
assistive annotations by offering advanced NLP capabili-
ties without server-side processing.

The PoC web application developed in this study illus-
trates the potential of lightweight technology stacks for
enhancing assistive linked annotations. While the PoC
successfully demonstrates the feasibility of implementing
in-browser NER, serverless embedding, vector search,

and efficient serverless full-text search, it also highlights
the need for further development and optimization to
create comprehensive solutions for real-world applica-
tions. As technology evolves, the prospects for devel-
oping robust, responsive, and user-friendly annotation
interfaces using lightweight stacks are promising, paving
the way for significant advancements in biomedical infor-
matics and beyond.

Acknowledgements
The author is grateful to the organizers of the Biomedical Linked Annotation
Hackathon 2024 for providing a collaborative venue to work on this project
and for the valuable input and insights from the participants.

Authors’ contributions
The author confirms sole responsibility for the following: study conception
and design, data collection, analysis and interpretation of results, and manu-
script preparation.

Funding
No funding.

Availability of data and materials
The data described in this report can be freely and openly accessed at
Zenodo: https:// doi. org/ 10. 5281/ zenodo. 11467 006 [9].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author declares no competing interests.

Received: 3 June 2024 Accepted: 26 September 2024

References
 1. Neves M, Ševa J. An extensive review of tools for manual annotation of

documents. Brief Bioinforma. 2019;22(1):146–63. https:// doi. org/ 10. 1093/
bib/ bbz130.

 2. Roddy JW, Lesica GT, Wheeler TJ. SODA: a TypeScript/JavaScript library for
visualizing biological sequence annotation. NAR Genomics Bioinforma.
2022;4(4):lqac077. https:// doi. org/ 10. 1093/ nargab/ lqac0 77.

 3. Enberg P. Latency - reduce delay in software systems. New York: Manning
Publications Co.; 2024. ISBN 9781633438088.

 4. Matsumoto N, Moran J, Choi H, Hernandez ME, Venkatesan M, Wang P,
et al. KRAGEN: a knowledge graph-enhanced RAG framework for bio-
medical problem solving using large language models. Bioinformatics.
2024;40(6):btae353. https:// doi. org/ 10. 1093/ bioin forma tics/ btae3 53.

 5. Diehl AD, Meehan TF, Bradford YM, Brush MH, Dahdul WM, Dougall DS,
et al. The Cell Ontology 2016: enhanced content, modularization, and
ontology interoperability. J Biomed Semant. 2016;7(1):44. https:// doi. org/
10. 1186/ s13326- 016- 0088-7.

 6. Gargano MA, Matentzoglu N, Coleman B, Addo-Lartey EB, Anagnosto-
poulos A, Anderton J, et al. The Human Phenotype Ontology in 2024:
phenotypes around the world. Nucleic Acids Res. 2023;52(D1):D1333–46.
https:// doi. org/ 10. 1093/ nar/ gkad1 005.

 7. Li Z, Zhang X, Zhang Y, Long D, Xie P, Zhang M. Towards general text
embeddings with multi-stage contrastive learning. arXiv. 2023. https://
doi. org/ 10. 48550/ arXiv. 2308. 03281.

10 https:// devel oper. chrome. com/ docs/ ai

https://doi.org/10.5281/zenodo.11467006
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/nargab/lqac077
https://doi.org/10.1093/bioinformatics/btae353
https://doi.org/10.1186/s13326-016-0088-7
https://doi.org/10.1186/s13326-016-0088-7
https://doi.org/10.1093/nar/gkad1005
http://arxiv.org/abs/2023
https://doi.org/10.48550/arXiv.2308.03281
https://doi.org/10.48550/arXiv.2308.03281
https://developer.chrome.com/docs/ai

Page 7 of 7Thalhath Genomics & Informatics (2024) 22:17

 8. Kim JD, Wang Y, Fujiwara T, Okuda S, Callahan TJ, Cohen KB. Open Agile
text mining for bioinformatics: the PubAnnotation ecosystem. Bioinfor-
matics. 2019;35(21):4372–80. https:// doi. org/ 10. 1093/ bioin forma tics/
btz227.

 9. Thalhath N. Nishad/lannotate: release v0.1.3. Zenodo. 2024. https:// doi.
org/ 10. 5281/ zenodo. 11467 007.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btz227
https://doi.org/10.1093/bioinformatics/btz227
https://doi.org/10.5281/zenodo.11467007
https://doi.org/10.5281/zenodo.11467007

	Lightweight technology stacks for assistive linked annotations
	Abstract
	1 Introduction
	1.1 Objective and rationale
	1.2 Use cases

	2 Methods
	3 Results
	4 Discussions and conclusions
	Acknowledgements
	References

